
If You Zone It, Who Will Come, and How Will They Travel?

The Effects of Relaxed Zoning Regulations on Travel Behavior

by

Matthew Wigginton Conway

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved Month Year by the
Graduate Supervisory Committee:

Deborah Salon, Chair
Deirdre Pfeiffer

Stewart Fotheringham
Michael van Eggermond

ARIZONA STATE UNIVERSITY

April 2021



©2021 Matthew Wigginton Conway

All Rights Reserved



ABSTRACT

Urban areas across the Unites States are facing a housing affordability crisis. One ap-

proach some cities and states have taken is to reduce or eliminate single-family zoning. Single-

family zoning prevents the construction of more-affordable apartments in vast swaths of

the American urban landscape. This policy shift has already occurred inMinneapolis, Sacra-

mento, and Oregon, and is under discussion in California, Massachusetts, and North Car-

olina, among others.

Independent of any effects on housing affordability, changes to land use will have effects

on transport. I evaluate these effects using a microsimulation framework. In order for land

use policies to have an effect on transport, they need to first have an effect on land use, so I

first build an economic model to simulate where development will occur given a loosening

of single-family zoning. Transport outcomes will vary depending on which households live

in which parts of the region, so I use an equilibrium sorting model to forecast how residents

will re-sort across the region in response to the land use changes induced by new land-use

policies. This model also jointly forecasts how many vehicles each household will choose to

own. Finally, I apply an activity-based travel demandmicrosimulationmodel to forecast the

changes in transport associated with the forecast changes from the previous models.

I find that while there is opportunity for economically-feasible redevelopment of single-

family homes into multifamily structures, the amount of redevelopment that will occur

varies greatly depending on the exact expectations of developers about future market con-

ditions. Redevelopment is focused in higher-income neighborhoods.

The transport effects of the redevelopment are minimal. Average car ownership across

the region does not change hardly at all, although residents of new housing units do have

somewhat lower car ownership. Vehicles kilometers traveled, mode choice, and congestion

change very little as well. This does not mean that upzoning does not affect transport in

i



general, but that more nuanced proposals may be necessary to promote desirable transport

outcomes. Alternatively, the results suggest that upzoning will not worsen transport out-

comes, promising for those who support upzoning on affordability grounds.

ii



ACKNOWLEDGMENTS

If it takes a village to raise a child, it takes at least a Census tract or two to write a disser-

tation. I am indebted to many who have supported me on this journey through graduate

school, and in my life leading up to it. Academically, Deborah Salon has been an excellent

mentor, collaborator, and friend, guidingme through this endeavor. I have truly appreciated

the time I’ve spent with her, both as I worked through my dissertation, and as we collabo-

rated on a myriad of other projects. My other committee members have likewise provided

invaluable support. I come from a transportation background, and Deirdre Pfeiffer has ex-

celled at teaching me about housing issues. Stewart Fotheringham helped spark my interest

in advanced econometrics during my first semester at ASU, and has continued to ask chal-

lenging and useful questions throughout the dissertation process. I’ve known Michael van

Eggermond longer than any ofmy other committeemembers, first meeting him before grad-

uate schoolwhileworking in consulting. Hehas always adeptly bridged the gaps betweenmy

prior experience with accessibility models, and this new world of microsimulation models.

I am indebted to numerous professors I have worked with throughout my undergrad-

uate and graduate careers, including (at Foothill College) K. Allison Lenkeit Meezan, who

encouragedme to pursue geography and to present atmy first conference; ChristineHansell,

who first suggested I should pursue a PhD; and Jennifer Carlin-Goldberg, who taught my

first statistics class and helped me realize I actually liked math; (at UC Santa Barbara) Helen

Couclelis, who treatedme like a graduate student even though Iwasn’t; KostasGoulias, who

encouraged me to pursue transportation modeling; Stuart Sweeney, who taught me spatial

statistics; (at Arizona State University, in addition to my committee) Kevin McHugh and

Rashad Shabazz, who impressed upon me the value and importance of critical approaches

to geography; David King, who has been an excellent collaborator on several projects; Peter

Kedron, who helped me make sense of the academic job market, and Ram Pendyala, who

iii



directs the Center for TeachingOldModelsNEwTricks andwho taughtme surveymethods

and advanced transportation data analysis.

I want to thankmy parents,Michele andDan, andmy brother, for raisingme in a house-

hold where knowledge and inquiry were valued, and for providing a respite from graduate

school during several family vacations. I thankmy auntMary LouDavis (inmemoriam) and

Jim Love for welcoming me to the Phoenix area and making me feel at home.

A number of close friends have supportedme through the process of completingmy dis-

sertation. Anson Stewart, Bonnie Bounds, Connor Larsen, Kush Bhagat, and Sam Zhang

have all been available to assist me, be sounding boards, and give advice from their own grad-

uate school experiences. I owe convergence of my sorting models to Sam, without whom I

would probably still be trying to get the Los Angeles housing market to clear. Anson Stew-

art and Conveyal also providedme with consulting opportunities and office space at various

points in my degree program. Elaine Hoffman answered my questions about architecture

and construction cost estimating.

I thank the team at California YIMBY for first getting me interested in this topic, bring-

ing me to your workshop in January 2018. Salman Ahmad, Paavo Monkkonen, and Salim

Furth provided valuable feedback and advice on the models in this dissertation.

And of course, I could not have done this without my partner, Dhruti Bhagat. I’m ex-

cited that soon I’ll be able to call you my wife. Our guinea pigs, Adam, Bernard, and Bella,

have also been supportive throughout the process—may Adam rest in peace.

While final computationswere carriedout onAmazonWebServices, significant portions

of the computation for this dissertation was computed using the Arizona State University

Agave high-performance computing cluster. I am indebted toASUReseach Computing for

supporting these efforts.

Portions of this dissertation are based on the Zillow Transaction and Assessment

iv



Dataset. Data provided by Zillow through the Zillow Transaction and Assessment Dataset

(ZTRAX). More information on accessing the data can be found at http://www.zillow.

com/ztrax. The results and opinions are those of the author(s) and do not reflect the po-

sition of Zillow Group.

During this research, the author was supported by by the School of Geographical Sci-

ences andUrbanPlanningNEXUS/SNRF fellowship, theDwightDavid EisenhowerTrans-

portation Fellowship Program, and the Center for Teaching Old Models NEw Tricks.

v

http://www.zillow.com/ztrax
http://www.zillow.com/ztrax


TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PROFITABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Building Fit Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Prototype Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Building Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3.1 Monthly Rental Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3.2 Operating Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3.3 Net Present Value for New Buildings . . . . . . . . . . . . . . . . . . 27

2.1.3.4 Net Present Value for Existing Buildings . . . . . . . . . . . . . . . 28

2.1.3.5 Net Present Value for Vacant Lots . . . . . . . . . . . . . . . . . . . . 29

2.1.3.6 Sensitivity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Redevelopment Near Transit Stations . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 FORECASTING OF HOME SALES TO HOMEOWNERS AND DE-

VELOPERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Modeling of Single-Family Home Sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Simulation of the Residential Bid Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



CHAPTER Page

3.3.1 The Geography of Redevelopment . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Access Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 SIMULATINGRESIDENTIALLOCATIONCHOICEANDVEHICLE

OWNERSHIP DECISIONS RESULTING FROM CHANGES IN THE

BUILT ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Residential Location Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Joint Models of Residential Location and Car Ownership . . . . . 60

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Solving for a New Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1.1 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 POPULATION SYNTHESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



CHAPTER Page

6 ACTIVITY-BASED TRAVEL DEMAND MODEL . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Model Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Land Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.2 Skims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2.1 Walking and Bicycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2.2 Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2.3 Public Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Travel Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.2 Congested Network Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.1 Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 DISCUSSION, POLICY IMPLICATIONS, AND CONCLUSION . . . . . . . 127

7.1 Implications for Housing Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Implications for Transport Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Recommendations for Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

APPENDIX

A MAPS OF SENSITIVITY TESTS FOR PROFITABILITY MODEL . . . . . . . 148

B COMPUTATIONAL APPROACHES USED IN SORTING MODEL . . . . . 152

C SORTING MODEL COEFFICIENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

viii



APPENDIX Page

D OPEN-SOURCE SOFTWARE DEVELOPED FOR THIS DISSERTA-

TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



LIST OF TABLES

Table Page

1. Prototype Buildings for Which Construction Costs Are Estimated . . . . . . . . . . . . . . 20

2. Hedonic Regression to Predict Ln(Monthly Rental Value) for Constructed

Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Percent of Properties in ZTRAX Dataset Matching SCAG Dataset . . . . . . . . . . . . . . 26

4. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5. Hedonic Model for Ln(Vacant Property Sale Price) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6. Parameters for Sensitivity Tests of Net Present Value Model . . . . . . . . . . . . . . . . . . . . 32

7. Number of New Units Developed Under Various Development Scenarios, in

Thousands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8. Number of NewUnits in the HighQuality Transit Area Developed Under Var-

ious Scenarios, in Thousands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9. Logit Models for Probability that a Property Sold in the Last 5 Years . . . . . . . . . . . . . 46

10. Assumed Probabilities of Redevelopment Given Sale, by Profitability . . . . . . . . . . . 47

11. Redeveloped Parcels Forecast by the Sales Model, with Number of Profitable

Units from the Construction Model for Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12. Factor Analysis of PUMA-Level Density Variables, Varimax Rotation . . . . . . . . . . . 63

13. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

14. Predicted Household Vehicle Ownership for Different Scenarios . . . . . . . . . . . . . . . . 86

15. Time Windows Used in Activity-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

16. Allowed Access Modes for Each Primary Public Transport Mode . . . . . . . . . . . . . . . 114

17. Equilibrium Sorting Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

17. Equilibrium Sorting Model Results, Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

17. Equilibrium Sorting Model Results, Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

x



Table Page

17. Equilibrium Sorting Model Results, Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

17. Equilibrium Sorting Model Results, Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

17. Equilibrium Sorting Model Results, Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xi



LIST OF FIGURES

Figure Page

1. Southern California Association of Governments Region . . . . . . . . . . . . . . . . . . . . . . 3

2. Optimal Density as Predicted by the Alonso-Mills-Muth Model, and Actual

Density Constrained by Zoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Residential Zoning in Southern California . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4. Conceptual Model of Relationships Between Zoning and Travel Behavior . . . . . . . 7

5. Computation of Front Setbacks Based on StreetGeometry andBuilding Footprints 14

6. Evaluating Which Buildings Fit on Which Parcels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7. Which Parcels Can Support Each Prototype Building in San Gabriel, CA . . . . . . . . 18

8. An Irregularly-Shaped Parcel that an Area Comparison Finds Suitable for a Du-

plex, Threeplex, or Sixplex, but that My Building Fit Algorithm Does Not . . . . . . . 19

9. PUMA-Level Fixed Effects from Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10. Fixed Effects for Hedonic Model of Vacant Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11. Comparisons of Net Present Values and Observed Sale Prices . . . . . . . . . . . . . . . . . . . 33

12. Percentage Growth in Units in the Current Appreciation Scenario . . . . . . . . . . . . . . 35

13. PercentageGrowth inUnits in theCurrentAppreciation Scenario,HighQuality

Transit Area Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14. Fixed Effects from Logistic Regression Models of Property Sales . . . . . . . . . . . . . . . . 45

15. Redevelopment by Location, Including Sales and Redevelopment Probabilities . . 51

16. Access Levels around New Development for Various Development Scenarios . . . . 53

17. Access LevelsAroundNewDevelopmentRestricted to theHighQualityTransit

Area, for Various Development Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

18. PUMAs in Southern California . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



Figure Page

19. Evolution of α and Sum of Squared Excess Demand Over 9 Iterations of Price

Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

20. Growth Rates for Single- and Multi-Family Housing Across the SCAG Region,

Derived from RHNA Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

21. Changes in Monthly Average Rents Under Different Scenarios, Weighted Aver-

age of Single- and Multi-Family Rents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

22. PUMA-Level Median Income, Fitted vs. Observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

23. PUMA-Level Median Income, Scenarios vs. Fitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

24. PUMA-Level Median Income, Residents of New Buildings Only . . . . . . . . . . . . . . . 92

25. Change in Interquartile Range of PUMA Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

26. Comparisons of Actual and Synthetic Populations by Age and Sex . . . . . . . . . . . . . . 100

27. Comparisons of Actual and Synthetic Populations by Tenure and Household Size 101

28. Comparisons of Actual and Synthetic Populations by Income . . . . . . . . . . . . . . . . . . 102

29. Comparisons of Actual and Synthetic Populations by Vehicle Ownership . . . . . . . . 103

30. Comparison of Tract Median Income, Actual and Synthetic Populations . . . . . . . . 105

31. Normal (Left) andTurn-Based (Right)GraphRepresentations of the StreetNet-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

32. Observed and Simulated Trip Lengths in Southern California . . . . . . . . . . . . . . . . . . 118

33. Observed and Simulated Hour of Departure for Trips in Southern California . . . . 119

34. Observed and Simulated Trip Mode Choice in Southern California . . . . . . . . . . . . . 119

35. Person-Trip Mode Choice, Low Operating Cost Scenario vs. Baseline . . . . . . . . . . . 120

36. VKT Per Capita, by Annual Household Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

37. AM Peak Congestion, Baseline, Core of the SCAG Region . . . . . . . . . . . . . . . . . . . . . 122

38. Kilometers of Roadway by Level of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii



Figure Page

39. Change in SegmentTravel Time, LowOperatingCost Scenario vs. Baseline, AM

Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

40. Geographic Distribution of Growth for Each Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 150

41. Geographic Distribution of Growth for Each Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 151

xiv



Chapter 1

INTRODUCTION AND MOTIVATION

ManyofAmerica’smost economically productive urban areas are facing a housing afford-

ability crisis (Shaw 2018). These areas demonstrate low supply and high demand for housing

units. Onemechanism thatmany argue has contributed to this shortage is restrictive zoning

that constrains the ability of developers to produce housing—particularlymultifamily hous-

ing, which is generally less expensive than single family homes, butwhich is not allowed to be

built in many neighborhoods (e.g. Glaeser 2011; Molloy 2018). While exclusive single-family

zoning is ubiquitous in the US, it is largely absent in many other nations (Hirt 2014).

Recently, a number of US cities and states have relaxed or are considering relaxing their

zoning ordinances, to promote additional housing supply and by extension housing afford-

ability (Infranca 2019; Dillon 2020; Mervosh 2018; Bliss 2019; Phillips 2020). There is sig-

nificant evidence that this works (Shaw 2018; Been, Ellen, and O’Regan 2019; Logan 2021),

although others question the efficacy of these policies (Rodríguez-Pose and Storper 2019).

Infranca (2019) details many of these policy changes. Massachusetts has used financial

incentives to encourage communities to create dense, mixed-use zones. California has sim-

plified approval processes for infill projects in cities that fail to meet their affordable hous-

ing obligations under the law discussed previously. California was until recently consider-

ing a bill that would preempt local single-family zoning in areas near job centers or public

transportation across the state (Dillon 2020). In 2019, Oregon preempted local zoning laws

prohibiting medium-density housing (Bliss 2019). North Carolina is currently considering

allowing fourplexes in any residential zone statewide (Increase Housing Opportunities 2021).

City-level efforts have also occurred; Minneapolis recently stopped zoning any parts of
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the city for exclusive single family use, allowing small apartment buildings in residential areas

throughout the city (Mervosh 2018). Sacramento recenly voted to eliminate single-family

zoning citywide in their next general plan update (Clift 2021).

Separate from any effects on housing affordability, the built environment also has an

effect on travel behavior (inter alia, Ewing and Cervero 2010; Aston et al. 2020). Therefore,

changes to the zoning regulations that control thebuilt environmentwill also induce changes

in travel—either positive, by inducingwalking, biking, and transit use, or negative, inducing

more driving and congestion. Indeed, in the early 2010’s, California passed SB 375 in an

attempt to use housing and land use policy to reduce transportation emissions (Barbour

and Deakin 2012). While the current land use policy discourse is largely focused on housing

affordability outcomes, changes to land use policy to effect housing affordability will also

have effects on transportation. This dissertation examines those effects.

Travel behavior is not directly affected by land use policy. Rather, it is affected by actual

land use, which is in turn affected by land use policy. Thus, it is necessary to address the ques-

tion of how land use policy affects travel behavior in two parts: first, how land use policy af-

fects land use, and second, how land use affects travel. I examine twohypothetical changes to

land use policy in Southern California. Since single-family zoning is dominant across theUS

(Hirt 2014), I focus on this type of zoning. The two scenarios I model are a blanket elimina-

tion of single-family zoning and an elimination of single-family zoning only in areas around

transit stops, consistent with the aims of the now-defunct SB 50 in California (Wiener et

al. 2019, § 65918.51–3) and a bill currently being considered in Boston (Logan 2021). These

proposals both represent geographically-dispersed upzoning, which should help with hous-

ing affordability, as they do not concentrate development in a few neighborhoods (Phillips

2020). I simulate both proposals in the Southern California Association of Governments

(SCAG) region, which includes all of Southern California except for SanDiego County (Fig-
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ure 1). This dissertation uses simulation models to forecast the effects of these proposed

policies on land use change, the effects of that land use change on residential location choice,

and the effects of the land use change and residential location choice on transport.

Figure 1. Southern California Association of Governments Region

Changes to land use policy will not necessarily induce changes to land use. Rather, it

must be both permitted by policy and economically advantageous for changes in land use to

occur. For instance, low-price California cities may have permissive zoning for new housing,

but they still see little construction due to low demand and thus low profits for developers

(Monkkonen, Lens, and Manville 2020). Thus, modeling the economic feasibility of new

housing is the first step in determining how travel behavior is affected by these land use poli-

cies. I focus on the changes that would be newly permitted by a change from single-family
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to multifamily zoning: replacing a single-family home (or a vacant lot) previously zoned

for single-family housing with a multifamily home. I use a net-present-value model using

construction costs and discounted cash flows to model developer decisionmaking about the

profitability of new construction. This model and its results are presented in Chapter 2.

The famed Alonso-Mills-Muth model of urban development provides theoretical justi-

fication for why upzoning leads to construction in some areas but not in others. This model

posits that for every distance from the center of the city, there is an economically-optimal

density. In the absence of zoning, the highest densities occur in the center of the city, where

land costs are highest and developers substitute capital for land by building taller, denser

buildings. Moving away from the center, land costs fall and density does as well (Alonso

1964). However, zoning may prevent these optimal densities from occurring. Consider the

theoretical situation shown in Figure 2. As predicted by the Alonso-Mills-Muth model, the

optimal density declines smoothly from the central business district to the exurbs. However,

zoning causes the density to decline dramatically at a point just outside downtown where

multifamily housing ceases to be allowed. In the absence of zoning, the market would pro-

vide higher density housing in these locations.

This simplified model demonstrates a key economic aspect of the effect of zoning on

cities. Zoning changes will only cause housing to be constructed in places where there is

sufficient market demand to support it. If the existing zoning regulations permitted a level

of density higher than the optimal density, changing the zoning regulations to permit even

higher density would have no effect on development, and thus no effect on the actual built

environment.

Inspection of zoning maps from many metropolitan areas suggests that there are signif-

icant areas where multifamily housing would likely be profitable, but is prohibited by regu-

lation. Figure 3 shows the residential zoning in Southern California. While the downtown
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Figure 2. Optimal Density as Predicted by the Alonso-Mills-Muth Model, and Actual
Density Constrained by Zoning

areas are zoned for multifamily development (blue), many areas not terribly distant from

downtown (and often well-served by transit) are zoned single-family (orange). I expect to

find that inmany of these closer-in areas, it would be profitable to buildmultifamily housing

if it were permitted, particularly in this example given the high cost of housing in California.

Minimum density regulations are rare, and likely to be ineffectual. Levine (2006) argues

that zoning cannot increase density above what the market would otherwise provide, because

any regulations that attempted to do so would simply result in developers choosing not to

develop in that location. The true story is likely to be somewhatmore nuanced—a regulated

minimum density slightly above what the market considered optimal might not cut into

developers’ profits enough to make the development infeasible—but the general argument

stands.

This dissertation focuses on a single type of development: the development of small
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Figure 3. Residential Zoning in Southern California

multifamily homes on existing single-family home lots. I focus on small developments that

could fit on a single family home lot because land assembly for larger developments in the

vast single-family neighborhoods of American cities is very difficult, and carries a significant

(and difficult-to-predict) price premium (Brooks and Lutz 2016; Miceli and Sirmans 2007;

Gammage 2016, 163). Small, single-lot developments are the most likely developments to

be implemented in the short to medium term, as they do not have to contend with land

assembly delays andmaybe less likely to face strongneighborhoodopposition (Pendall 1999).

Policy changes to allow such developments have recently been proposed or implemented in

Oregon, California, and Minneapolis.

I take a microsimulation approach, simulating the location and transportation choices
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Figure 4. Conceptual Model of Relationships Between Zoning and Travel Behavior

of developers and households. Figure 4 presents a conceptual model of the relationships be-

tween zoning, housing supply, residential location choice, and travel behavior. Solid lines

indicate relationships that are included in the microsimulation models in this dissertation,

while dashed lines are hypothesized to exist in the world but are not modeled in this disser-

tation for simplicity.

Housing prices are a function of housing supply and housing demand. Housing prices

affect housing construction; as prices rise, new development is more likely to be profitable.

However, development is also constrained by zoning codes. As housing prices rise, home-

owners become more risk-averse in protecting their investment through means including

zoning (Fischel 2001). Zoning also affects housing prices by excluding excluding noxious
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and obnoxious uses such as landfills or scrapyards.1 Housing construction of course directly

affects housing supply.

Residential location choice is a function of housing prices and other exogenous features

of housing and neighborhoods. In the aggregate, residential location choice determines

housing demand, which in turn affects prices and residential location choice. Residential

location choice affects the access (i.e. what urban opportunities one can reach; Committee

of the Transport Access Manual 2020) a particular household experiences by determining

whether they live in a high-access or low-access neighborhood. In turn, access affects how

residents choose to travel. Finally, these travel choices affect access by affecting levels of con-

gestion and thus travel times.

To model this complex system, I divide it into three models, and remove relationships

drawn as dashed lines in Figure 4. First, a construction model that forecasts development

based on exogenous initial housing prices and zoning scenarios, shown in green in Figure

4. Next, a residential location choice model that forecasts residential choices based on hous-

ing prices and housing supply from the construction model, shown in purple. Last, a travel

demandmodel that forecasts travel behavior based on residential location choices and exoge-

nous sociodemographics, shown in salmon.

The construction model is presented in Chapters 2 and 3. Chapter 2 develops a model

of whether it will be profitable to develop a variety of different building types on all single-

family-zoned parcels in Southern California. In order for construction to actually occur,

however, the parcel must be purchased by a developer. I assume most single-family home-

owners are not interested in replacing their homes with an apartment building. Estimates of

profitability are adjusted with probabilities of sale to a developer in Chapter 3.
1Zoning also has a long history of being used to exclude affordable housing and enforce segregation. While

this may at least nominally be related to concerns about housing prices, research suggests actual effects are
variable and small (Galster 2004, and following comment by Jill Khadduri).
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The travel behavior implications of these new units will depend on who lives in them.

If they are occupied primarily by high-income individuals, the denser environment may not

have as significant an effect on travel behavior as one might expect; high-income individuals

drive more and use transit less than lower-income individuals (Pucher and Renne 2003), to

the point that some transit construction projects have actually resulted in less transit usage

due to rising rents and ensuing displacement of low-income, low-car-ownership households

(Pollack, Bluestone, and Billingham 2010). The sociodemographics of residents are a key

input into the travel demand model that is described in Chapter 6.

The residential location choice model is described in Chapter 4. It takes the form of

an equilibrium sorting model (Kuminoff, Smith, and Timmins 2013). This model struc-

ture is a extension of a discrete choice model. Discrete choice models simulate how peo-

ple make choices with a finite choice set by modeling a “utility”—or value—of each choice,

and predicting that individuals probabilistically choose the choice with the highest utility

(Ben-Akiva and Lerman 1985). The equilibrium sorting model uses a similar framework,

but employs an equilibration procedure to account for the fact that the discrete choices

are exclusive—only one household can (successfully) choose a particular home. When the

model is used to predict a new housing choice equilibrium, an iterative process is usedwhere

the demand is calculated. Prices are then raised on housing units where demand exceeds

supply, and lowered on housing units where supply exceeds demand, to bring the market

to equilibrium. These types of models have been employed in residential location choice

research in the past (Bayer, McMillan, and Rueben 2004; Tra 2010).

I am using a sorting model in a somewhat different way than others have; most previ-

ous applications of these models have used them to evaluate how people would re-sort in

response to a change in the amenities available at a location (e.g., air quality (Tra 2007, 2010,
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2013) or open space (Klaiber and Phaneuf 2010)). This requires some changes to the model

structure to account for the variable supply of housing between estimation and simulation.

Furthermore, I extend the equilibrium sortingmodel to jointlymodel vehicle ownership,

as these decisions are closely related. Since car ownership does not need to be brought into a

market equilibrium (because there is no exogenously-imposed distribution of car ownership

levels, as there is for housing), I extend the equilibrium sorting model to model a multidi-

mensional choice where some dimensions are equilibrated and some are not.

The results of this residential location choice and vehicle ownership model are used in

the activity-based travel demand model, to answer the question of how the original zon-

ing changes affect actual travel behavior (Chapter 6). I repurpose the ActivitySim/Travel

Model 1 travel demand model originally developed in the San Francisco Bay Area (Erhardt

et al. 2012), since both metropolitan areas are in Calfornia and are relatively similar. I make

slightmodifications to themodel, including removing somemodel components that are Bay

Area-specific, and replace the input data with data from the Los Angeles area, but do not re-

estimate any of the models due to data availability.

Using theActivitySimmodel requires generating a synthetic populationwith records for

individuals and households. Since the residential location choice model re-sorts households

across the region, standard population synthesis methods based on small-area demographic

estimates from the Census do not apply. Instead, I develop a synthetic population based

on the outputs of the residential location choice model, combined small-area housing type

prevalence estimated from the construction model.

A keymetric to understand transport effects is the level of traffic congestion. ActivitySim

does not estimate traffic congestion levels directly; rather, it produces origin-destination trip

flow matrices. I use a static traffic assignment algorithm to assign vehicle trips to the road

network and calcuate congestion levels, which is described in Chapter 6.
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Chapter 2

PROFITABILITY

Zoning changes are a necessary but not sufficient condition to promote development of

multifamily housing. For thatmultifamily housing to be built, it also has to be profitable for

a developer to construct. In this chapter, I develop simulations of developer decisionmaking

to understand where and under what circumstances development of multifamily homes on

single-family lots could occur, given a change to zoning.

Models of urban land development have been applied for decades. Early models oper-

ated at an aggregate level, identifying the zones where development of various types was

likely to occur (e.g. Waddell et al. 2003). Others have used an abstract grid to develop cel-

lular automata models to predict development based on development of adjacent cells (e.g.

Clarke, Hoppen, and Gaydos 1997; White, Engelen, and Uljee 2015).

More recent models identify individual parcels for development. Some models use a

random-utility formulation for this (e.g. Waddell et al. 2010). However, this formulation

does not explicitly model development profitability; it only identifies parcels likely to be de-

veloped using arbitrarily-scaled utility functions, rather than the actual costs that developers

use to make decisions. Real-world developers generally perform a “pro-forma” analysis be-

fore undertaking a project, which is a rough calculation of the profitability of the project

based on acquisition costs, construction costs and expected rents (Miles, Netherton, and

Schmitz 2015, 178). More recent work on developer location choice explicitly simulates this

process (e.g. Waddell 2013, 28–29; Johnson et al. 2018; Stiphany and Wegmann 2020).

I also simulate these developer pro-forma processes, using themost detailed information

on costs and cash flow available. Previous work has been based on per-square-foot costs (e.g.
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Johnson et al. 2018). Given the small size of the developments I intend to model, a more

scale-appropriate modeling methodology is based on specific buildings, rather than entire

developments. While it may be appropriate to characterize a large development solely by

type of use and square footage, the same is not true of small developments that might take

place on a single-family home lot, where the value of a marginal square foot varies greatly

depending on whether it affects the total unit count on the property.

This work most closely follows Monkkonen, Carlton, and Macfarlane (2020), who eval-

uated the effects of a shift in statewide zoning inCalifornia to allow fourplexes on all lots. My

analysis differs from that ofMonkkonen et al. primarily because I simulate several scenarios

for zoning change inmy results. My prototype building approach additionally appears to be

more detailed thanMonkkonen, Carlton, andMacfarlane, particularly in terms of space con-

straints within parcels, though since they rely on a proprietary software product it is difficult

to directly compare their methods to mine.

2.1 Modeling Approach

To address concerns about the appropriateness of square-foot-based models for small-

lot development, I introduce the concept of prototype buildings—a small number of build-

ing plans, with associated cost estimates, for small multifamily structures. These prototype

buildings also reduce the data requirements for running the model, as the costs for the pro-

totype buildings can be calculated with off-the-shelf construction cost estimating manuals.
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2.1.1 Building Fit Evaluation

An important aspect of determining which if any prototype buildings will be profitable

on a particular parcel is determining which buildings could even be feasibly built on the

parcel—as a large multifamily building might simply not fit on some small lots. Moreover,

not all of the area of a lot is “buildable,” as most municipalities have setback requirements

for how close a building can be built to the property line. I assume a 1.524m (5 foot) side and

rear setback for all parcels.

Front setbacks are considerably more variable than side and rear setbacks, so assuming

a blanket value for them across the region is likely to bias results. For instance, just in the

City of Los Angeles, the required front setbacks in residential zones range from 0 to 45 feet

(Conway, Owens, and Gomba 2018). Unfortunately, such data are not available for all of

Southern California’s municipalities. Instead, I estimate the setbacks based on the existing

buildings, under the assumption that some buildings in each neighborhood are built up to

the setback. This is not perfect, particularly in neighborhoods where setbacks have changed

over time, but it should approximate the correct value.

To do this, I retrieved street centerlines fromOpenStreetMap (OpenStreetMap contrib-

utors 2020), parcels from the Southern California Association of Governments (Southern

California Association of Governments 2018), and building footprints from the Microsoft

Building Footprints dataset (Microsoft 2018). I computed the distance of each building to

every street within 30m. I then grouped the buildings by parcels, and for each street seg-

ment (i.e. block of street), I estimated the setback as the 20th percentile of setbacks observed

on each parcel within 30m. I used the 20th percentile because developers generally are only

required to build at least as far back as the setback, not exactly that far back.

To compute buildable area, for each parcel I create a 1.524m interior buffer to account
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for the side and rear setbacks, and then subtract a buffered street segments layer, where each

street segment is buffered by its computed setback. The inputs and results of this operation

are shown in Figure 5, for a gridded street pattern in San Gabriel, CA, and a curvilinear pat-

tern in Calabasas, CA. Parcels are shown in gray, buildable areas in green, and buildings and

street networks in black. All geoprocessing was implemented in PostGIS 3 in a Postgres 12,

running on a dual-core Intel i7Macbook Prowith 16GB ofRAMand a 1TB solid-state disk,

and was orchestrated using an sqmake workflow (Conway 2020).

(a)	San	Gabriel,	Los	Angeles	County,	CA (b)	Calbasas,	Los	Angeles	County,	CA

0 50 100	m

Road	centerlines
Buildings
Buildable	areas
Parcel	boundaries

Data:
OpenStreetMap
contributors,
Microsoft,
SCAG

Figure 5. Computation of Front Setbacks Based on Street Geometry and Building
Footprints

I then need to determine which of my prototype buildings will fit in the buildable area

on each property. Determining if an arbitrary polygon can fit into another polygon is a
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relatively complex problem (B. Chazelle 1983). I make several simplifying assumptions to

make a simple and fast algorithm for determining if each of my prototype buildings will fit

in the buildable area of each parcel. First, all of my prototype buildings are rectangular with

integermeter dimensions. Secondly, I do not allow arbitrary rotations, but only rotations in

15 degree increments. Third, I do not allow arbitrary translation but quantize translations to

the nearest meter. For each irregular parcel polygon, I then rasterize the polygon at a 1-meter

resolution. For each pixel within the polygon, I evaluate whether a rectangle the size of the

building would fit if its upper-left corner was at that pixel. If the building fits within the

polygon, then its upper left corner must also be a pixel within the polygon, and by checking

every pixel I can determine if the building fits in any position. I repeat this analyis for 0,

15, 30, 45, 60, and 75 degree rotations of the parcel, and for 0 and 90 degree rotations of

the building (since rotating the building is as simple as reversing the dimensions). Together,

these yield every possible relative rotation of the building and parcel from 0 to 165 degrees,

in 15 degree increments. Since rectangles are symmetrical, there is no need to compute the

remaining rotations, 180 to 345, as they are identical to the rotations computed so far.

Figure 6 shows the computation for how each of my prototype buildings did or did not

fit on a particular parcel. Each row represents a different rotation of the buildable area of the

parcel, and the columns represent different building dimensions and different rotations of

the buildings. Single-family homes and duplexes are combined becausemy protypical single-

family home and duplex have the same footprint. The rasterized buildable area is shown

in maroon, and the building in yellow, if the building fits within the buildable area of the

parcel. When the building can fit in multiple configurations for a particular rotation, only

one is shown. When the building does not fit within the buildable area, the buildable area

is shown in gray. The single-family home/duplex can fit in any rotation on this parcel, while
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the threeplex can fit in only three (Figure 6c,β,θ), and the sixplex will not fit at all. Thus this

parcel can support the first three building types, but not the sixplex.
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Figure 6. Evaluating Which Buildings Fit on Which Parcels

I implemented this algorithm in Python, using the shapely (Gillies 2020), rasterio

(Mapbox 2018), and numpy (Harris et al. 2020) packages. In order to speed computation,
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the core algorithm was just-in-time compiled from Python to machine code using numba

(Lam, Pitrou, and Seibert 2015). It took approximately 2.5 hours to compute whether each

of the three footprints would fit on each of the 4.75 million parcels in Southern California,

on the aforementioned 3.1 GHz, 2-core Intel i7 system. Computations were executed in par-

allel. Building fit metrics for all four prototype buildings for the area of San Gabriel, CA

previously shown are displayed in Figure 7.

This approach is significantlymore complex and computationally-intensive than simply

comparing the area of the buildable area to the area of the desired building. However, the

simpler method may identify parcels that are oddly shaped as being suitable for a building.

For instance, the parcel shown in Figure 8 is large enough that, by area, it could accomodate

any of the building types in this chapter. However, none of them will actually fit on this

irregularly-shaped parcel. Overall, 13% of the parcels considered in this research are large

enough in terms of buildable area to accomodate one ofmy prototype buildings, but do not

have a section of buildable area that the prototype building could actually fit in.

That said, many of the parcels that the area-based approach finds feasible and my ap-

proach does not are relatively regularly shaped and probably could fit such buildings, if they

were reconfigured slightly (for instance, to be longer and narrower). In future research, in-

cluding more alternative footprints for each type of building is warranted to close this gap.

2.1.2 Prototype Buildings

The core of the approach used in this chapter to evaluate building feasibility is the “pro-

totype building.” This is the design of a building, with dimensions and cost of construction.

Using a small number of prototype buildings allows more detailed cost estimations than is
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(a)	Single-family	home/duplex

(b)	Threeplex

(c)	Sixplex

Legend
Building	does	not	fit
Building	does	fit
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Data:	SCAG,	OpenStreetMap	contributors,	Microsoft

Figure 7. Which Parcels Can Support Each Prototype Building in San Gabriel, CA
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Figure 8. An Irregularly-Shaped Parcel that an Area Comparison Finds Suitable for a
Duplex, Threeplex, or Sixplex, but that My Building Fit Algorithm Does Not

possible with square-foot-based formulae, using construction-industry cost estimatingman-

uals. In this project, I estimate the cost of a variety of prototypebuildings using theRSMeans

Online Square Foot Estimator, with 2020 Q4 data (RSMeans 2020).2 The prototype build-

ings I estimate the cost for are shown in Table 1. They include a duplex, a threeplex, and

a sixplex. They also include a single-family home, as one reaction to a hot housing market

might be to produce larger housing, a trend known as “mansionization” (Monkkonen, Carl-

ton, and Macfarlane 2020).

The single-family home and the duplex are very similar; they have the same number of

stories and the same footprint. The key difference is that the duplex has two smaller units

in the same footprint, but the interior square footage, garage spaces, and so on, are the same.

The threeplex has a larger footprint, understandably. I assume these prototype buildings are

all built like the typical single-family home—stickbuilt wood-frame construction covered

in stucco. The sixplex is larger and significantly more expensive, as it assumes commercial

construction rates, cement siding, and six subterranean parking spaces.
2I considered using 2020 base data rather than Q4 in case COVID-19 had caused construction demand

and prices to change, but this was not the case in the RSMeans data released in 2020 Q4.
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Table 1. Prototype Buildings for Which Construction Costs are Estimated
Building Units Footprint

(meters)
Stories Beds Baths Garage

spaces
Con-
struc-
tion

Single-
family
home

1 12×10 2 4 2.5 2 Wood
frame
and
stucco

Duplex 2 12×10 2 2× 2 2×1.5 2×1 Wood
frame
and
stucco

Threeplex 3 16×11 2 1×1, 2×2 1×1,
2×1.5

3 Wood
frame
and
stucco

Sixplex 6 21×10 3 1×3,
3×2,
2×1

1×2,
3×1.5,
2×1

6 subter-
ranean

Wood
and fiber
cement

Construction costs were estimated for each of these prototype buildings, using the

RSMeans Square Foot Estimator model with costs for construction in Los Angeles.3 Ar-

chitectural fees were estimated to add 10% on top of the estimated costs, within the general

range of architectural costs for new residential construction (HomeAdvisor 2020), and an

additional 10% contingency budget was added. The single-family home, duplex, and triplex

were assumed to have standard residential labor construction costs, while the larger sixplex

was estimated as commercial construction with union labor. Sometimes zoning relaxations

to promote housing construction include “prevailing wage” requirements (e.g. California’s

SB 35; Wiener 2017), which could raise labor costs above these assumptions.

Parking can add significantly to the cost of construction. The single-family and duplex

units include the cost of construction of two garage parking spaces, while the threeplex as-
3Due to licensing restrictions, the calculated costs cannot be reproduced here.
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sumes the construction of three garage parking spaces. The sixplex assumes six underground

parking spaces. The cost of these is not estimated byRSMeans, but a large apartment project

in Los Angeles spent $21,000 per parking space in 2001 (Shoup 2011, p. 148). The Consumer

Price Index for large cities in theWest indicates inflation of 52% since 2001 (Bureau of Labor

Statistics 2020),4 so I estimate the cost of subterranean parking as $31,975 per space. This is

likely an underestimate due to economies of scale present in the larger project.

In addition to construction costs, developments are subject to a number of permitting

and impact fees imposed by municipalities. While they can be efficient if they assign the

marginal cost of city services to newdevelopment, they can also reduce housing supply (Been

2005). Unfortunately, there is a lack of transparency in how these fees are calculated, and it

maynot evenbepossible for developers to estimate these fees in advance (Mawhorter, Garcia,

and Raetz 2018). Thus, including them in cost estimates is difficult. However, Mawhorter,

Garcia, and Raetz (2018) developed estimates of development fees for prototypical single-

family and multifamily developments in the City of Los Angeles, of $32,127 and $11,746

per unit, respectively. While these developments are much larger than the developments

I am simulating, these fees represent the best available estimate, and thus I apply them to all

projects in the region.

Building a new building on an existing single family home lot requires demolishing any

existing single family home on the lot. Demolition costs were estimated for a 1600 square

foot single-family home on a 6 inch thick, 1800 square foot (to account for a garage) concrete

slab using RSMeans software. Additionally, disposal costs for the debris generated were es-
4The producer price index for construction is not used because it was restartedwith new categories in 2014

so does not have a continuous series for this time period.

21



timated based on current rates in Southern California.5 This estimated value was applied to

any lot that had an existing structure.

Landscaping costs represent another cost component in producing a finished develop-

ment. I estimate the cost of landscaping by creating a cost estimate for a yard 25% covered in

hardscaping (driveways, walkways, patios, etc.) and 75% covered in irrigated lawn using the

RSMeans software. I convert this estimate to a per-square-foot cost and multiply it by the

number of square feet on the parcel not covered by the building.

2.1.3 Building Value

Estimating the value of the current landuse aswell as future landuses requires estimating

both the income from the property (in the form of rents) as well as the expenses associated

with the property. Construction costs were detailed in the previous section; in this section, I

discuss estimating the rental value (Section 2.1.3.1) and the ongoing operating costs (Section

2.1.3.2) for all land uses. I then combine these estimates into estimations of present value for

new structures (Section 2.1.3.3), existing structures (Section 2.1.3.4), and vacant lots (Section

2.1.3.5). Finally, I present sensitivity tests of the value model in Section 2.1.3.6.
5A 6 inch thick, 1800 square foot concrete slab has a volume of 1800× 0.5× 27−1 = 33.333 cubic yards.

The edges of the slab are thicker; assuming a 170 foot perimeter and 2 foot thick by 18 inchwide thickened edge,
the additional volume is 170×1.5×1.5×27−1 = 14.167 cubic yards, for a total of 33.333+14.167 = 47.5 cu-
bic yards. When broken up, concrete roughly doubles in volume, and weighs approximately one short ton per
cubic yard (Dumpsters.com 2021). At current rates at the SimiValley Landfill, each ton of concrete costs $32.40
for recycling (Waste Management 2020), meaning that foundation debris disposal from this building would
cost $3,116. The Federal Emergency Management Agency estimates that an 1800 square foot house (again, in-
cluding the garage) will generate 360 cubic yard of debris (exclusive of vegatation), weighing 0.5 short tons per
cubic yard, translating to 180 tons of debris (Federal Emergency Management Agency 2007). The Simi Valley
Landfill charges $74/ton for disposal of mixed construction and demolition waste (WasteManagement 2020),
costing $13,320 for disposal.
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2.1.3.1 Monthly Rental Income

To estimate the value of bothnew and existing structures for use in determining themost

profitable use, a simple hedonic model of monthly rent was developed. I chose to develop

a model of monthly rent, rather than sale values, because sales of multifamily properties are

likely to be somewhat rare. I thus assume for the purposes of determining profitability that

all units are rented. Data to estimate the model came from the 2013–2017 5-year American

Community Survey microdata distributed by the Integrated Public Use Microdata Sample

(Ruggles et al. 2019). Unfortunately, the data available for estimating a hedonic model in

IPUMS is somewhat limited; I used dummy variables for properties built in 2000 or later,

a dummy for a single family home, and dummies for 1, 2 and 3 or more bedrooms (relative

to studio). Additionally, I included fixed effects for the 124 Public Use Microdata Areas in

Southern California, which is the most granular geography available in IPUMS, to control

for unobserved neighborhood features. Model estimation results are in Table 2; fixed ef-

fects are displayed in Figure 9. The dependent variable is the natural logarithm of monthly

rent. Since themodel has no constant, the fixed effects for each location represent a location-

specific constant, and introduce location-based variation in rent of up to $1,000.

The model fits relatively poorly as hedonic models go, with an R2 of 0.36, likely due

to the small number of attributes available in the IPUMS data. In future work I hope to

improve this model with a better dataset.

I use this model to estimate the monthly rent that would be garnered by each prototype

building on each parcel, by estimating the monthly rent for each unit in the building and

summing. Since this is a log-linear model, the estimated rent is eXB+ s2

2 , where s2 is the
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Table 2. Hedonic Regression to Predict ln(Monthly Rental Value) for Constructed
Buildings

Coefficient Std. Err. t p

Built in 2000 or later 0.13*** 0 26.94 0
Single-family home 0.12*** 0 40.5 0
1 bedroom 0.09*** 0.01 17.35 0
2 bedroom 0.37*** 0.01 72.54 0
3 bedroom 0.57*** 0.01 96.45 0
PUMA fixed effects 6.17–7.33 (see Figure 9)

R2 0.36
Adj. R2 0.36
Sample size 124,258

Standard errors are heteroskedasticity-robust (HC3) (Angrist and Pischke 2009, 300)
.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001
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Figure 9. PUMA-Level Fixed Effects from Model
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residual variance and corrects for the asymmetry of the lognormally distributed error term

(Giles 2013).

The rents estimated by this model are lower than expected for Los Angeles County,

because the rents in the IPUMS are lower than one would expect. The median rent in

the IPUMS in the Los Angeles—Long Beach—Anaheim metropolitan statistical area is

$1,409/month, while Zillow estimates rents in the same area at $2,545/month (Zillow 2020).

Intuitively, the Zillow numbers are much closer to lived experience renting in large US

metropolitan areas. I estimate a constant scaling factor of 1.8 andmultiply all predicted rents

from the hedonic model by this value to better represent realistic rents, while preserving the

heterogeneity introduced by the hedonic model.6

I also estimate the monthly rent of the existing single-family homes, since not demolish-

ing the home is always an option. I retrieve data on existing properties in the SCAG region

from the ZillowZTRAXAssessment database (2018 edition), which aggregates public prop-

erty assessment data from across the US (Zillow 2019b). I extract single-family homes and

vacant residential parcels from this dataset and join them to the aforementioned SCAG land

use dataset, which is parcel-based. I use this hedonicmodel based on the IPUMS to estimate

the rents for these existing single-family homes.7 The vast majority of the parcels join cor-

rectly between datasets, but 1.3% do not, with some county-level variation (Table 3). These

parcels are discarded.

6TheZillownumber is not simply themedian rent, but themean of themiddle quintile (Zillow 2020); the
adjustment factor is computed by calculating the same statistic from metropolitan Los Angeles IPUMS data
and comparing to the Zillow estimate.

7Assessment data from Imperial County shows almost all single family homes having 0 bedrooms. In
future work I intend to impute more realistic bedroom counts. However, since Imperial County is remote
and sparsely populated, these missing data do not affect the more urbanized areas of the SCAG region where
development is likely to be more profitable.
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Table 3. Percent of Properties in ZTRAX Dataset Matching SCAG Dataset

County Total single-family
parcels in ZTRAX

Unmatched single-family
parcels in ZTRAX Percent unmatched

Los Angeles 1,522,112 8,688 0.6%
Orange 597,562 12,844 2.1%
Riverside 596,629 18,280 3.1%
San Bernardino 608,070 3,925 0.6%
Ventura 175,716 429 0.2%
Imperial 34,083 860 2.5%

Total 3,534,172 45,026 1.3%

2.1.3.2 Operating Costs

Developers estimate profitability by comparing annual net income over a certain time

period (discussed below) to costs. To convert the estimatedmonthly rent from the previous

section to annual net operating income i, I subtract 45% formaintenance, taxes, etc. (Barron

2012) and multiply by 12 to annualize:

i = 12(1−m)p(1− υ) (2.1)

where i is annual net operating income, p is the monthly rent, m is the proportion of

monthly rent needed to cover maintenance, taxes, etc., and υ is the assumed vacancy rate.

All variables used in this chapter are defined in Table 4. In future work I plan to disaggre-

gate this and in particular to investigate the effects of California’s Proposition 13, which can

cause large tax discontinuities when properties are sold or significantly redeveloped, andmay

thus disincentivize development.
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2.1.3.3 Net Present Value for New Buildings

When investors and developers are considering whether a project is financially feasible,

they compute a net present value based on discounted operating income flow for a term,

for instance ten years,8 and discounted expected sale values at the end of that term (Miles,

Netherton, and Schmitz 2015, 212).

I compute the present value of the property using a discount rate, an appreciation rate,

and a capitalization rate forwhen theproperty is eventually sold (212). For existing structures,

I sum the discounted net operating income for years 0–9, and the discounted expected sale

value in year 10. For existing properties, the full calculation is

vex =

[
9∑

t=0

i(1 + a)t(1 + rex)
−t

]
+ i(1 + a)10(1− f)(1 + rex)

−10c−1 (2.2)

where vex is the net present value, a is the annual rate of rent and sale value appreciation,

rex is the discount rate for existing structures, c is the capitalization rate, i is annual rental

income from the property, and f is the transaction costs of selling the property.

The sum term in (2.2) represents the discounted net operating income for the first 10

years of ownership, and the remaining portion the sale value. I estimate the annual rate of

appreciation to be 4.80%. Using the Zillow home value index for single family homes, I

computed the year-on-year appreciation for each year from 2010 to 2017 and took the mean.

I compute the capitalization rate by comparing estimated annual income from (2.1) with sale

values for properties that sold in 2013–2017 (using the Zillow Home Value Index for single

family homes in the Los Angeles metropolitan area to convert values to 2017 dollars (Zillow

2021)). The median value is 4.4%, which I use in my calculations; I use the median rather
8Tenyears is a common termoverwhichdevelopers estimate income (Miles,Netherton, andSchmitz 2015);

while the exact term chosen should not significantly affect the estimated value of the property, in future work
I intend to conduct sensitivity tests of this term.
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than the mean due to significant outliers. I assume transaction costs are 9% of the sale value

(Zillow 2019a).

The final term is the discount rate. This is less well defined. Theoretically, it should

be somewhat higher than interest rates for loans for new homes, as the homeowner takes on

somewhatmore risk than the bank doeswhen investing in a home. Rather than exogenously

assuming adiscount rate, I consider rex a free parameter and calibrate (2.2) so that themedian

net present value to sale value ratio for homes that sold in 2013–2017 is 1. This results in a

discount rate of 6.5%, slightly higher than interest rates over the last decade (Freddie Mac

2021).

2.1.3.4 Net Present Value for Existing Buildings

The net present value of redeveloped parcels is computed slightly differently, to account

for the time they are under construction. I assume construction takes two years, so net op-

erating income (loss) for the first two years is assumed to be half the cost of constructing the

project, with no gross receipts. Net operating income for remaining years, and sale value at

the end of the 10-year period, is calculated aswith single-family homes. Thus, the calculation

is as follows:

vnew =
b

2
+

b

2
(1 + rnew)

−1 +

[
9∑

t=2

i(1 + a)t(1 + rnew)
−t

]

+ i(1 + a)10(1− f)(1 + rnew)
−10c−1 (2.3)

where b is the (negative) construction cost, vnew is net present value, rnew is the discount rate

for new construction, and all other variables are as used in (2.2).

I use a different discount rate for new construction than was used for existing construc-

tion, to account for the increased risk of new construction relative to purchasing an exist-
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Table 4. Nomenclature
Variable Description

vex Net present value of an existing home
vnew Net present value of a new structure
t Year since start of model
i Monthly rental income
p Monthly rent estimated by hedonic model (Table 2)
m Maintenance and taxes as a proportion of rent
υ Assumed vacancy rate
rex Discount rate for existing property
rnew Discount rate for newly-constructed properties
a Annual property appreciation
c Capitalization rate
f Transaction costs

ing structure. Construction loans currently have interests rates of 6%–10% (ValuePenguin

2020); I split the difference and assume an interest rate for new construction of 8%. As be-

fore, not all risk to construction is likely capitalized into interest rates. Garcia (2019) assumes

a 3% “developer fee” on top of interest rates to account for risk and developer overhead, so I

add this to the interest rate and assume a discount rate for new construction of 11%.

To determine the most profitable use, I simply take the use that has the highest net

present value among existing and all new uses.

2.1.3.5 Net Present Value for Vacant Lots

Vacant lots are handled differently, because they generally do not accrue rent (unless used

for parking), and thus (2.2)would evaluate to zero and these propertieswould always be rede-

veloped as long as construction costs did not exceed rents. However, the value of vacant lots

is defined almost solely by option value, which the net present value calculation does not in-

corporate. Thus, I compute the net present value for the existing single-family-zoned vacant

29



Table 5. Hedonic Model for ln(Vacant Property Sale Price)
Coef Std. Err. t-value p-value

Constant 7.83*** 0.06 138.72 0.0
ln(lot area) (square meters) 0.29*** 0.01 41.75 0.0
Transaction year: 2008 -0.05 0.04 -1.1 0.27
Transaction year: 2009 -0.47*** 0.05 -10.12 0.0
Transaction year: 2010 -0.64*** 0.04 -14.35 0.0
Transaction year: 2011 -0.79*** 0.05 -17.14 0.0
Transaction year: 2012 -0.68*** 0.04 -16.66 0.0
Transaction year: 2013 -0.41*** 0.04 -11.56 0.0
Transaction year: 2014 -0.39*** 0.03 -11.1 0.0
Transaction year: 2015 -0.41*** 0.03 -11.89 0.0
Transaction year: 2016 -0.34*** 0.03 -11.71 0.0
Transaction year: 2017 base
Not shown: PUMA fixed effects (see Figure 10)

Sample size 19,094
R2 0.53
Adj. R2 0.52

property using a log-linear hedonicmodel based onZillowZTRAXtransaction data (Zillow

2019b), which is presented in Table 5. It includes property area, the year of the transaction

(to account for inflation), and fixed effects for most PUMAs (some adjacent PUMAs are

merged to ensure all PUMAs have five or more observations, using aQueen’s case adjacency

matrix computed with PySAL (Rey and Anselin 2007)). The PUMA-level fixed effects are

presented in Figure 10. This model is used to estimate the value of each single-family-zoned

vacant property if it were to sell in 2017. The net present value for potential redevelopments

of vacant property are calculated the same as for non-vacant properties using (2.3).
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Figure 10. Fixed Effects for Hedonic Model of Vacant Properties

2.1.3.6 Sensitivity Tests

Since the assumed and estimated parameters are somewhat uncertain, I performed sen-

sitivity tests where I varied the values of these parameters to see how the results vary when

developers operate under different plausible assumptions (Table 6). The current apprecia-

tion scenario uses the values described above, and is the one that I believe to most closely

represent the development environment in Southern California, but the other scenarios are

plausible. A low appreciation scenario lowers property appreciation to 1.4%, the current

Consumer Price Index (Bureau of Labor Statistics 2021), since an increase in housing supply

construction may cause rents and thus appreciation to fall. The low discount rate scenario
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Table 6. Parameters for Sensitivity Tests of Net Present Value Model
Discount rate

New
const-
ruction

Existing
home

Capital-
ization
rate

Apprec-
iation
rate

Opera-
ting
cost

Contin-
gency

Current appreciation 11.0% 6.0% 4.424% 4.803% 45% 10%
Low appreciation 11.0% 6.813% 4.424% 1.4% 45% 10%
Low discount rate 8.0% 4.125% 4.424% 1.4% 45% 10%
Equal discount rate
(8% existing and new) 8.0% 8.0% 4.424% 1.4% 45% 10%

Low operating cost (25%) 11.0% 6.813% 4.424% 4.803% 25% 10%
High construction cost 11.0% 6.813% 4.424% 1.4% 45% 40%

assumes that discount rates closely match current interest rates for new construction loans

and consumer loans to purchase existing homes, and could be plausible if the Federal Re-

serve keeps interest rates low.9 The equal discount rate scenario assumes that the discount

rates for new construction and existing homes are the same, which would be plausible if the

government were to provide subsidized loans to encourage housing construction. The low

operating cost scenario assumes that maintenance, taxes, etc. only cost 25% of rent, rather

than 45% as in other scenarios. Finally, the high construction cost scenario assumes a 30%

increase in the cost of construction, plausible if the recent astronomical increases in the costs

of buildingmaterials (Dezember andQuiros-Guiterrez 2021) continue, or if zoning changes

contain “prevailing wage” requirements that result in higher labor costs.

As a check on the results, I compare the estimated net present values for the current

appreciation scenariowith the sale values of properties that transacted betwen 2013 and 2017,

again using Zillow ZTRAX (Zillow 2019b) data adjusted to 2017 dollars with the Zillow

Home Value Index for single-family homes (Zillow 2021). The results are shown in Figure
94.125% is the median interest rate on for home purchase loans in Los Angeles County, computed using

the 2019 Home Mortgage Disclosure Act (HMDA) data (Consumer Financial Protection Bureau 2019).
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Figure 11. Comparisons of Net Present Values and Observed Sale Prices

11. Net present values track fairly well with observed sale values. TheR2 of the predicted vs

actual values is only 0.054, however this is primarily due tomany outliers in the sales data. If

sales over $2 million are removed, the R2 is a respectable 0.377—indicating the net present

value model does a reasonable job of reproducing sale values, in the same ballpark as the

hedonic model of rents it is based on (Table 7).
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2.2 Results

Table 7 shows the results of running this model under each of the scenarios described in

Table 6.10 In the current appreciation case (shown in the first line of the table), 96% of single-

family-zoned parcels are not redeveloped. The remaining 4% are redeveloped primarily into

sixplexes. To accomodate this redevelopment, 58,000 single-family homes are torn down,

leading to a net increase of 397,000 housing units.

45% of the redevelopment occurs on vacant lots, rather than lots with existing single-

family homes. Therefore, the net increase may be a high estimate, for two reasons. First,

I don’t account for the possibility that property owners will hold onto land to redevelop

later when it may be more profitable; others have addressed this with dynamic models of

redevelopment (Murphy 2018). Second, a small amount of the single-family zoned vacant

properties are common areas or flood control features that are unlikely to be redeveloped.

Growth is not evenly spread across the region, but is concentrated in two primary re-

gions. First, the west side of Los Angeles and much of Orange County see significant rede-

velopment. There is also significant redevelopment in relatively less-developed areas in the

AntelopeValley north of LosAngeles, and in outlying areas around Palm Springs east of Los

Angeles (Figure 12).

The remaining rows of Table 7 indicate that the net present value model is highly sensi-

tive to the assumptions used, with reasonable variations in assumptions leading to forecasts

of as low as 5,000 marginal units, or as many as 4,333,000. The geographic distribution of
10Due to a technical error, some parcels sizes were underestimated by up to 1 meter. Correcting this error

changes the number of profitable marginal units in Tables 7 and 8 by nomore than 1.5%, and will be corrected
in future research.
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Figure 12. Percentage Growth in Units in the Current Appreciation Scenario
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Table 7. Number of New Units Developed Under Various Development Scenarios, in Thousands
New units

Non-
redeveloped

parcels

Single-
family
home

Duplex Threeplex Sixplex Total Teardowns Marginal
units

Current appreciation 96.2% 0 6 168 282 455 58 397
Low appreciation 99.5% 0 1 39 0 40 2 38
Low operating cost (25%) 66.3% 0 10 415 4,758 5,183 849 4,333
High construction cost 99.9% 0 0 5 0 5 0 5
Low discount rate 96.3% 0 6 162 268 435 54 381
Equal discount rate
(8% existing and new) 80.5% 0 6 1,175 884 2,065 495 1,570
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development is similar in all scenarios, though development is more intense in the scenarios

that produce more units (maps for each scenario are presented in Appendix A).

Increased housing supply does not result in lowered rents in this model, ceteris paribus.

However, apartments are cheaper than single family homes, so an increase in apartment

construction can bring aggregate rents down as more people are able to choose this less ex-

pensive option. Housing construction can reduce rents through twomechanisms: a market

equilibrium mechanism and a unit mix mechanism. I only model the unit mix mechanism.

2.2.1 Redevelopment Near Transit Stations

Often, upzoning proposals do not constitute a blanket elimination of single-family zon-

ing, but rather upzoning only in specific areas. Often, the locations that are upzoned are

proximate to transit infrastructure (e.g. Wiener et al. 2019). Thus, in addition to the whole-

sale elimination of single-family zoning presented above, I also evaluate the effects of restrict-

ing zoning changes to only those areas within the High Quality Transit Area as defined by

SCAG (Southern California Association of Goverments 2019). These are areas within 1/2

mile of a rail or ferry stop, or a high-frequency bus line. Redeveloping in these areas may

promote sustainable transportation, and ease concerns about parking. If single-family zon-

ing were only eliminated in theHighQuality Transit Area, the net present valuemodel fore-

casts a net change of 69,000 units across the SCAG region—much smaller than the number

that would be developed if single-family zoning were eliminated everywhere. As with the

previous scenarios, the range of possible outcomes varies significantly based on the assump-

tions of the model (Table 8). Additional units are now concentrated almost exclusively on

the west side of Los Angeles and in Orange County, as other areas that were redeveloped in

the base model are outside the High Quality Transit Area (Figure 13). This eases gentrifica-
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Figure 13. Percentage Growth in Units in the Current Appreciation Scenario, High Quality
Transit Area Only

tion concerns, as the lower-income areas that saw significant redevelopment in the previous

models are excluded from zoning changes. As before, geographic patterns are similar in all

scenarios, although they vary in intensity; maps for all scenarios are presented in Appendix

A.

2.3 Conclusion

In this chapter, I detailed amethod for using construction industry cost estimatingman-

uals as a data source for land development models. When evaluating the effects of relaxing

single-family zoning, this is a useful approach, as it is based on actual buildings, rather than

abstract costs and values per square foot. While such aggregatemetrics are appropriate when

evaluating large developments, my more detailed approach is much more appropriate for

small redevelopments of single-family home lots with only a few units.
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Table 8. Number of New Units in the High Quality Transit Area Developed Under Various Scenarios, in Thousands
New units

Non-
redeveloped

parcels

Single-
family
home

Duplex Threeplex Sixplex Total Teardowns Marginal
units

Current appreciation 99.3% 0 1 27 56 84 15 69
Low appreciation 99.9% 0 0 4 0 4 0 4
Low operating cost (25%) 91.0% 0 1 80 1,340 1,422 245 1,177
High construction cost 100.0% 0 0 1 0 1 0 1
Low discount rate 99.3% 0 1 26 56 82 14 68
Equal discount rate
(8% existing and new) 94.2% 0 1 351 257 609 156 453
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While themodel presented here is among themost detailed simulations of development

in the literature, it still glosses over significant details. The model does not evaluate the to-

pography of the parcel, andmay recommend building on slopes in excess of what is allowed

by zoning—in particular, this may explain some of the redevelopment the model proposes

in theMalibu area. Such lots would also have significant site preparation costs not included

in the RSMeans cost estimate. Similarly, the model does not account for lot coverage re-

quirements, which require a certain portion of the lot to be left empty, or restrictions on

development in the wildland-urban interaface. These regulations are not likely to be lifted

when single-family zoning is relaxed. Restrictions on building on hillsides are important

to life safety in Southern California, where earthquakes, mudslides, and other slope failures

are somewhat regular occurrences. While lot coverage requirements may be used to exclude

housing from a neighborhood, they may also serve a flood-control purpose by limiting the

impervious surfaces in an area, and again may not change if single-family zoning is elimi-

nated. The model does not consider the road, electricity, water, or sewer access of a parcel,

and may recommend building on parcels that lack these amenities; while this is not impossi-

ble, it would increase the cost of development in ways not modeled here.

My choice to use a static model means I cannot forecast the timing of redevelopment,

and cannot account for property owners holding off on profitable projects because they be-

lieve they will be more profitable in the future. Murphy (2018) uses a dynamic model that

accounts for the time component of redevelopment. In future work, considering such a dy-

namic framework could improve the accuracy of the forecasts, particularly over long time

horizons.

California is famous for regulatory delay of housing projects. These delays can add sig-

nificantly to project costs (Shannon 2015) and are largely not accounted for in this model,

except to the extent that they may fall within the two-year development window. Future
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work could better account for these delays. Some upzoning bills require that complying de-

velopment be approved through a ministerial process rather than review by a zoning board

or public comment, which could reduce the cost and length of delays.
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Chapter 3

FORECASTING OF HOME SALES TO HOMEOWNERS AND DEVELOPERS

The previous chapter shows that there could be significant opportunity to cost-

effectively redevelop properties in Southern California. However, just because a property

can be profitably redeveloped doesn’t mean it will be. Properties are generally redeveloped

after being purchased by a developer. Thus, for a property to be redeveloped, it first must

come up for sale, and then the winning bid must be placed by a developer. In this chapter, I

simulate that process. Previous models of redevelopment have largely stopped with evaluat-

ing feasibility, without going to the next step of the redevelopment “funnel” of estimating

which properties will actually be sold to developers (Monkkonen, Carlton, and Macfarlane

2020).

I simulate the sale process for land in two steps. First, I model the probability that each

home will sell in a five-year period using a logistic regression model. Then, I assume the

probability that a developerwill enter thewinning bid for a piece of property. Most property

is not sold to developers, but to homeowners or investors who do not plan to significantly

redevelop the property. These simulations are detailed in the next two sections.

I assume that changes to zoning will not affect how often homes go on the market, for

two reasons. First, transaction costs of moving are very high, and the literature on the deci-

sion to move suggests that it is generally not due to changes in land prices (Pyle 1985; Rossi

1980). Second, the increase in value brought by a change in zoning is likely to be stable, as in-

creased development capacity on the land will remain as long as the policy remains in force,

meaning that homeowners can sell on their timeline without fear of losing the additional

value of the properties. At the margin, owners may decided to sell in order to capitalize on

42



their windfall profit more quickly, but since there is little risk of losing that windfall profit

later, this effect seems likely to be close to negligible. Owners of investment properties may

respondmore elastically tomarket changes, which is a limitation of this approach. However,

only one-quarter of single family homes in the Los Angeles-Long Beach CSA (all counties in

the SCAG region except rural Imperial County) are not owner-occupied (USCensus Bureau

2019). Owners of vacant property may also be willing to sell to realize profits from a policy

change.

While profitability is estimated in the previous chapter without a time component, the

probability that a property will sell increases with time. Since I assume a five-year time hori-

zon in the logistic regression model of property sales, the results presented in this chapter

and used in further modeling represent expected development over a five-year period after

regulations are relaxed.

3.1 Modeling of Single-Family Home Sales

To understand the probability that a property will sell, I build two logistic regression

models, one for existing single-family homes and one for vacant properties, based on Zillow

ZTrans transaction data, as well as assessment data gathered by Zillow (Zillow 2019b). These

models forecast the probability that a parcel will sell, based on the building that is on the

property, the size of the property, and its location at the Public Use Microdata Area level.

The dependent variable is whether the property sold between 2013 and 2017, meaning the

models have a five-year time horizon. This model is not expected to fit particularly well, as

many property sales are not motivated by aspects of the homes, but rather of the sellers, but

it does provide a baseline probability that accounts for geographic differences in home sales.

The models are shown in Table 9; the fixed effects at the Public Use Microdata Area

43



(PUMA) level are shown in Figure 14. For the vacant property model, some PUMA’s do

not contain sufficient properties for estimation, and some PUMA’s suffer from perfect pre-

diction (i.e. all vacant properties either did or did not sell), which prevents estimation. To

solve these issues, I merged adjacent PUMA’s in the vacant propertymodel (using aQueen’s

case adjacency matrix calculated by PySAL (Rey and Anselin 2007)) so that every merged

PUMA contains 5 properties or more and none have perfect prediction. The Pseudo-R2 of

the existing home sale model is very low, 0.01, but this likely represents that there is signifi-

cant randomness in this process; the model does introduce spatial variation and variation by

house size and year built, which provides reasonable baseline estimates for the probability

of sale. A probability of sale is all that is needed, since I am not simulating which specific

homes will sell, only the probability that a given home will sell and be purchased by a de-

veloper. These probabilities are then summed over a neighborhood to produce estimates of

redevelopment, without forecasting redevelopment of any one specific home.

Properties with missing data for any of the variables used in the model in Table 9 were

dropped from the simulation at this point, with one exception. All property assessment

data from Imperial County is missing information on number of bedrooms, year built, and

number of bathrooms. Rather than dropping the entire county, these variables are assumed

to be zero in the model; the average effect of these omitted variables will be captured in the

PUMA fixed effect for the single PUMA that is coterminous with Imperial County. There

are no vacant residential-zoned properties in Imperial County present in the SCAG land-use

dataset. Imperial County is the most remote, rural, and least populous county in the SCAG

region, so this should not materially affect results in the more urbanized parts of the region.

Thesemodels are thenused to forecast a predictedprobability of eachparcel being sold in
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Figure 14. Fixed Effects from Logistic Regression Models of Property Sales
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Table 9. Logit Models for Probability that a Property Sold in the Last 5 Years
Existing homes

Odds ratio Coef. Std. err. t-value p-value

Constant -0.16 0.01 -15.43 0.0
Bathrooms 1.09*** 0.09 0.0 44.31 0.0
Lot area (square meters) 1.0*** -0.0 0.0 -12.72 0.0
Year built (base: 1940 or earlier)
Built 1941–1960 0.99. -0.01 0.01 -1.79 0.07
Built 1961–1980 0.96*** -0.04 0.01 -6.21 0.0
Built 1981–2000 1.06*** 0.06 0.01 8.92 0.0
Built 2001–present 1.51*** 0.41 0.01 49.16 0.0
Bedrooms (base: two bedrooms)
No bedrooms 0.55*** -0.6 0.03 -23.74 0.0
One bedroom 0.81*** -0.21 0.01 -15.52 0.0
Three bedrooms 1.08*** 0.07 0.0 17.31 0.0
Four or more bedrooms 1.09*** 0.09 0.01 16.75 0.0
Sample size 2321732
PseudoR2 0.01

Vacant properties
Odds ratio Coef. Std. err. t-value p-value

Constant -1.15 0.04 -28.98 0.0
Lot area (square meters) 1.0. 0.0 0.0 1.65 0.1
Sample size 10932
Pseudo-R2 0.11
***: p < 0.001, **: p < 0.01, *: p < 0.05, .: p < 0.1
Not shown: PUMA-level fixed effects

a five-year period, which is combined with the probability that a developer wins the bidding

process described in the next section.

3.2 Simulation of the Residential Bid Process

Prospective homeowners and developers compete in the property sale market, and for

a property to be redeveloped it generally must be sold to a developer. When properties are
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Table 10. Assumed Probabilities of Redevelopment Given Sale, by Profitability
Ratio of net present value of most prof-
itable redevelopment option to net present
value of existing use

Assumed probability of redevelopment
given sale

<0.95 0
0.95–1.0 0.05
1–1.1 0.1
1.1–1.25 0.2
1.25–1.5 0.3
1.5–2 0.4
≥2 0.5

sold, they are usually not sold to developers, but to other homeowners. In housing markets

where redevelopment is highly profitable, however, sales to developers are likely to be much

more common. Therefore, I assume that the probability that a property is redeveloped given

that it is sold is a step function of the ratio of the net present value of the most profitable

redevelopment of the parcel to the net present value of the existing home on the parcel (or,

in the case of vacant properties, the option value of the property as estimated by the hedonic

model in Table 5 in the previous chapter). The assumed probabilities are shown in Table 10.

I assume a small probability of redevelopment when redevelopment is less than 5% below

profitability, as developers may face different assumed costs or errors in the net present value

estimation may cause profitable developments to appear unprofitable.

While simply assuming probabilities of redevelopment may seem arbitrary and capri-

cious, it is still preferable to not including such a probability in the model at all. Not includ-

ing the probability implicitly assumes that all profitable parcels are redeveloped, something

that is clearly not true in the world. Waddell (2013) considers a random sample of candidate

properties for redevelopment in each year of his simulation, akin to what I am doing here.

In future work, I plan to perform sensitivity tests of these redevelopment probabilities.

In the meantime, I have performed sensitivity tests of many other variables in the model.

47



If these assumed redevelopment probabilities are too high, for example, results might more

closely approximate one of the less aggressive redevelopment outcomes.

3.3 Results

The results of the sales model applied to the different scenarios used in the construction

model are shown in Table 11. As expected, the total number of units constructed over a

five year period is significantly lower than the number of units that would be profitable to

redevelop. However, I believe these values aremore realistic. Under the current appreciation

scenario, 45,000 marginal units are forecast, but if developers perceived additional risk due

to market saturation and assume that property appreciation will follow the consumer price

index, only 2,000 would be built. Themore optimistic low operating cost scenario forecasts

644,000 marginal units.

To put these numbers in perspective, the six counties in Southern California permitted

47,000 new units in 2019 (US Census Bureau 2018, and author calculations). The current

appreciation scenario, then, is forecast to create a shock of approximately one years’ worth

of development. Since the model of property sale uses data from five years, this estimate is

implicitly a five-year estimate, or a 20% increase in housing production in Southern Califor-

nia over the next five years, a significant increase.11 If the forecast of the low operating cost

scenario were to come to fruition, it would more than triple annual housing production, a

truly astronomical number.

If development is constrained to only High-Quality Transit Areas, the number of

marginal units is significantly reduced, with expected development ranging from <1,000 to
11This is a conservative estimate; the 45,000 units from my model represent net production, accounting

for property teardowns to provide land for development. In contrast, the building permits survey represents
gross production.
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Table 11. Redeveloped Parcels Forecast by the Sales model, with Number of Profitable Units from the Construction Model for
Comparison

Non-redeveloped
parcels Single-

family
home

Duplex Three-
plex

Sixplex Total Tear-
downs

Marg-
inal
units

Profitable
marginal
units

Current appreciation 99.6% 0 0 14 38 52 8 45 397
Low appreciation 100.0% 0 0 3 0 3 0 2 38
Equal discount rate
(8% existing and new)

97.8% 0 0 112 134 246 57 190 1,570

High construction cost 100.0% 0 0 0 0 0 0 0 5
Low discount rate 99.7% 0 0 12 29 41 6 36 381
Low operating cost (25%) 95.1% 0 1 36 734 771 128 644 4,333

High-Quality Transit Area only

Current appreciation 99.9% 0 0 3 10 12 2 10 69
Low appreciation 100.0% 0 0 0 0 0 0 0 4
Equal discount rate
(8% existing and new)

99.4% 0 0 33 36 69 17 52 453

High construction cost 100.0% 0 0 0 0 0 0 0 1
Low discount rate 99.9% 0 0 2 6 8 2 7 68
Low operating cost (25%) 98.6% 0 0 7 212 220 37 182 1,177
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182,000 units, indicating that much of the forecast redevelopment occurs outside the high-

quality transit area. This suggests that broad-brush zoning changes may not affect transport

mode choice as much as some have hoped.

3.3.1 The Geography of Redevelopment

As with the results in the previous chapter, development is not evenly spread across

Southern California, as shown in Figure 15 (which, for brevity, presents only a sample of

the scenarios). The pattern of redevelopment is broadly similar to the patterns of where

profitable redevelopment is possible presented in the previous chapter, although new unit

densities are understandably lower. Whereas the net present valuemodel showed significant

redevelopment in the Antelope and Coachella Valleys north and east of Los Angeles, rede-

velopment densities are nowmore varied across the region, with the heaviest redevelopment

occurring inwealthy areas such as SantaMonica west of LosAngeles, and inOrange County.

Properties in these locations are more likely to sell (Figure 14). While this increases the rela-

tive amount of development in these areas as opposed to others, it is not the only or even the

primary contributor to the spatial pattern, as properties in these areas are also more likely to

be profitable to redevelop (Figure 12 in previous chapter).

This eases some concerns about gentrification in themost urban areas, as development is

largely concentrated in higher income areas, such as SantaMonica, Malibu, Orange County,

where gentrification is less of a concern. This geographic distribution is consistent with the

findings of Monkkonen, Lens, and Manville (2020), who found that both zoned capacity

and high rents were required to spur development.
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Figure 15. Redevelopment by Location, Including Sales and Redevelopment Probabilities

51



3.4 Access Implications

Access metrics are gaining ground as a useful way tomeasure the performance of a trans-

portation system. These metrics measure what the transportation system allows one to ac-

cess, for instance howmany jobs arewithin a 30minute transit ride (Committee of theTrans-

port Access Manual 2020). Access measures the quality of a transport system, and is corre-

latedwithmode share (Owen andLevinson 2015). Thus, building homes in high-access areas

is likely to result inmore convenient public transport use for residents of those new units. If,

however, development is concentrated on the fringes of the region, significant automobile

travel may be induced.

Figure 16 compares the distribution of the number of jobs reachable within 30 minutes,

for each of the scenarios, and overlays this on the distribution of access over the existing hous-

ing stock. In most scenarios, the new development is slightly more likely to occur that are

less accessible, suggesting that while a blanket upzoning may promote affordability, such a

broad-brush approachmay not prompt people to switch to alternative modes of transporta-

tion.

However, many zoning changes do not take such a broad-brush approach, but rather tar-

get upzonings to specific areas around public transport or other amenities. When upzoning

and simulated development is restricted to only the High Quality Transit Area, unsurpris-

ingly, the new development occurs in more accessible locations than the existing Southern

California housing stock (Figure 17). This may lead to more positive transport outcomes.

However, remember that restricting development toonlyHighQualityTransitAreas results

in far fewer homes being built overall, so trying to serve this transport goal may undermine

affordable housing goals.
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Figure 16. Access Levels around New Development for Various Development Scenarios
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Figure 17. Access Levels Around New Development Restricted to the High Quality
Transit Area, for Various Development Scenarios
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The job access figures used are from theAccessAcrossAmerica 2017 transit access dataset

(Owen andMurphy 2018). The block-level results are aggregated to tract level using popula-

tion weighted weights from theMissouri Census Data Center’s Geocorr platform (Missouri

Census Data Center 2014).

3.5 Conclusions

As part of the RHNA process, the California Department of Housing and Community

Development estimated that there is a shortfall of 1.3 million housing units in the SCAG

region (McCauley 2019). Even the more optimistic low operating cost scenario does not

result in enough units to meet the estimated shortfall. However, small multifamily units

are not the only development occurring in Southern California; in 2019, 91% of permitted

multifamily units in the SCAG region were in projects with five or more units. These larger

developments are beyond the scope of this dissertation, but their economies of scale likely

make them feasible in additional locations. The results of single-family upzoning simulated

in this dissertation could be a significant contributor to a broader solution.

Government spending could also help meet the unit goal. In the aftermath of World

War II, facing a similar housing crisis, the US federal government intervened to subsidize the

housingmarket through readily-available loans and federal mortgage insurance that spurred

significant suburban development (Hanchett 2000). While these policies were extremely

racially unjust (e.g. Rothstein 2017), they demonstrate the ability of government spending

to tilt the tables towardsmore development. TheRHNAprocess inCalifornia demonstrates

that enabling additional housing construction is a current policy goal.

Furthermore, estimates of housing construction are highly variable depending on the

assumptions made by developers when evaluating profitability. This uncertainty makes un-
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derstanding the effects of supply-side housing policies very difficult. The cyclical nature of

housing construction suggests that this volatility in whether projects are profitable is real

rather than an effect of the modeling herein. This indicates that researchers should always

evaluate multiple scenarios with different assumptions when forecasting the effects of these

policies.

This research also demonstrates that when evaluating large-scale estimates of market fea-

sibility of redevelopment, it is important to account for the probability that a property will

actually be redeveloped, even if it is profitable to do so. Generally, properties are not rede-

veloped until they are sold, and even then they often do not transact to a developer, even

if redevelopment would be profitable. Many other evaluations of the profitability of rede-

velopment do not account for this effect (Monkkonen, Carlton, and Macfarlane 2020, e.g.

Johnson et al. 2018). These other models give an indication about whether development is

possible under different policy scenarios, and forecast where development is likely to occur

geographically. However, without estimating the probability of redevelopment given prof-

itability, any forecasts about future land use are likely to be overstated.
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Chapter 4

SIMULATING RESIDENTIAL LOCATION CHOICE AND VEHICLE

OWNERSHIP DECISIONS RESULTING FROM CHANGES IN THE BUILT

ENVIRONMENT

4.1 Introduction

In Chapters 2 and 3, I developed and applied a model of what multifamily construction

would occur, given exogenous changes in zoning codes. Before I can apply a travel demand

model, I need to simulate where people will choose to live given changes in housing supply,

as residential location is an important input to travel demandmodels. Since the vehicle own-

ership decision is closely related to the residential location choice decision, Imodel these two

phenomena jointly.

This research uses an equilibrium sorting model framework (Bayer, McMillan, and

Rueben 2004; Tra 2007, 2010, 2013; Klaiber and Kuminoff 2014; Kuminoff, Smith, and

Timmins 2013) to understand how changes in the distribution of housing resulting from

a shock to the regulatory system will likely affect the distribution of the population and car

ownership choices. The equilibrium sorting model framework is unique in that it has a

market clearing or equilibration step in which prices are adjusted to bring the market into

equilibrium. This allows modeling how households re-sort across the region in response to

a shock of some sort. In a classical discrete choice model, it is not possible to understand

how the population will sort after a shock to the alternatives and their amenities, because

the prices of the various options are taken as exogenous. Thus, classic discrete choicemodels

can onlymeasuremarginal changes inwell-being or sorting, but cannot account for the com-
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plexmarket dynamics that occur with a non-marginal change such as a significant increase in

apartment construction. In most previous research, this shock is a change to neighborhood

amenities or sociodemographics (e.g., Tra 2007; Klaiber and Phaneuf 2010; Bayer, McMil-

lan, and Rueben 2004; van Duijn and Rouwendal 2013). In this research, the shock is an

exogenous change to the housing supply, as estimated by the construction and development

models in the previous two chapters.

4.2 Literature Review

4.2.1 Residential Location Choice

Mathematical models of residential location choice are prevalent in the literature. Most

often, these models use a discrete choice formulation, with examples dating at least to Mc-

Fadden (1978). They model the choice between housing alternatives—which may be indi-

vidual homes or aggregate zones—by modeling the “utility” of each alternative and finding

the alternative that (probabilistically) has the maximum utility. These models may use a

multinomial logit, or a more complex nested or mixed logit model.

Some authors extend the discrete choice framework to include an equilibration step.

These are known as sorting models because this equilibration or market-clearing step sim-

ulates changes in residential location choices that result from changes in the attributes of

housing. Whereas traditional discrete choice models that do not have an equilibration step

can only evaluate the effects of marginal changes to the independent variables, sorting mod-

els allow the evaluation of non-marginal effects.

Sorting models were described by Bayer, McMillan, and Rueben (2004). Since then,

they have been applied in a number of contexts, primarily for the valuation of unpriced
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amenities such as open space (Klaiber and Phaneuf 2010), air quality (Tra 2007, 2010, 2013),

and cultural amenities (van Duijn and Rouwendal 2013). In this chapter, I apply such a

model to examine the effects of a change in the housing supply.

Several authors in the transport literature have used equilibrated discrete choice models

to forecast residential location choice. The UrbanSim framework adjusts prices of housing

in an iterative process to bring themarket to equilibrium (Waddell 2010;Waddell et al. 2018).

The CT-RAMP and related ActivitySim activity based travel demand model (and possibly

others) use a technique known as “shadow pricing” in order to doubly constrain destina-

tion choice models; effectively, a “price” representing unobserved disutility is added to cer-

tain choices (for instance, schools) to ensure capacity constraints are not exceeded (Atlanta

Regional Commission 2019; Association ofMetropolitan Planning Organizations 2019). de

Palma, de Lapparent, and Picard (2015) also equilibrates a complex model of residential and

workplace choice.

The key difference between this prior work and my current work based on the equi-

librium sorting models used in economics is how they treat unobserved heterogeneity. The

general equilibrium sortingmodel I use is able to differentiate unobserved between-housing-

type heterogeneity from observed variables that do not vary within a housing type (i.e.,

grouping of houses by observable characteristics such as location or size). For instance, sup-

pose the housing types used in the travel demand model are single-family or multifamily, as

well as a PUMA.Within each housing type, there will be no variation in whether properties

are single-family or multifamily. In a standard discrete choice model, it would be possible to

estimate an alternative-specific constaint for a specific housing type, or to estimate the effect

of single family homes on utility, but not both, because one implies the other. Through the

two-stage estimation process described below, I am able to recover both the effects of ob-

servable variables that do not vary across housing types, as well as unobserved heterogeneity
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in the utility of different housing types. This estimate of unobserved heterogeneity is pre-

served in simulation, assuming that unobserved heterogeneity between housing types does

not change as a result of the policy scenario.

4.2.2 Joint Models of Residential Location and Car Ownership

While standalone models of car ownership are somewhat rare, joint models of car own-

ership and residential location choice are more common. Car ownership is a choice that

is perforce closely associated with residential location choice. Residents of dense, transit-

served neighborhoods may be able to own fewer or even no cars, while residents of far-flung

suburbs likely will require more cars to serve their daily transportation needs. Furthermore,

households likely consider the need for car ownership when making their residential loca-

tion choice, with some preferring to choose a neighborhood where they can own no or few

cars, and others preferring automobility and a suburban neighborhood where driving is less

constrained and car ownership levels are higher.

Salon (2009) considered the joint choice of residential location (by Census tract), car

ownership, and commute mode for residents of New York City. She found that car owner-

ship and use would be effectively reduced by increasing travel times by car relative to those

by transit. Because of the lack of an equilibration step in her model, she was unable to con-

sider the non-marginal effects of a housing shock, however. Guerra (2015) studied the joint

choice of car ownership and residential location in Mexico City with a mixed logit model,

and found that they were surprisingly unrelated, or perhaps even negatively related, due to

the tendency of wealthy reseidents of the city center to own vehicles. Bhat et al. (2013) jointly

models residential location choice and car ownership in the San Francisco Bay Area, with an

eye towards understanding the travel behavior of immigrants. They find that over time im-
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migrants assimilate to a car-oriented lifestyle, butmore importantly for this paper, Bhat et al.

find that the effect of residential location on car ownership is rather strong, with households

choosing lower density neighborhoods owningmore cars than their higher-density counter-

parts.

4.3 Data

Microdata on households is retrieved from the Integrated Public UseMicrodata Sample

(IPUMS) for the years 2012–2017 (Ruggles et al. 2019), for the SCAG region. The IPUMS

contains information about household sociodemographics as well as about the homes these

households occupy. These data are used to describe the population making residential loca-

tion choices as well as the choices available to those residents.

The IPUMS contains individual responses to theAmericanCommunity Survey. To pro-

tect respondent privacy, geographic data is only provided at the coarse Public UseMicrodata

Area (PUMA) level, geographies that contain at least 100,000 residents. In the densest parts

of the SCAG region, these are relatively small, but in the less dense parts they can be quite

large. This represents a limitation of this work; locational preferences can only be modelled

at this geographic aggregation, and neighborhood-level attributes must be summarized to

this level. There are 124 PUMAs in the SCAG region (Figure 18).

The IPUMS data are augmented with neighborhood information. School quality is

calculated based on the median proportion of fifth-grade students considered proficient in

math for elementary schools in the PUMA, based on 2012 STAR test data from the Califor-

nia Department of Education (California Department of Education 2012).

Intersection density and the number of jobs accessible within a 45 minute driving com-

mute are obtained from the EPASmart LocationDatabase (US EPA 2013). Jobs accessible by
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Figure 18. PUMAs in Southern California

public transit within 30 minutes are obtained from the University of Minnesota Accessibil-

ity Observatory (Owen and Murphy 2018). These datasets are provided at much finer levels

of geography than the PUMA (block groups in the case of the Smart Location Database,

and blocks in the case of the Accessibility Observatory data). These are summarized to the

PUMA level by averaging all constituent geographies, weighted by population in the case of

SLD data, and housing units in the case of Accessibility Observatory data.

Retail job density comes from the US Census Bureau LODES dataset (US Census Bu-

reau 2017). The number of retail jobs within 1.5km of every Census tract is computed and

density is calculated. That density is then averaged to the PUMA level, weighted by hous-

ing units. Crosswalks from tracts and blocks to PUMAs weighted by housing units were

calculated using the Geocorr 2014 tool (Missouri Census Data Center 2014).
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Table 12. Factor Analysis of PUMA-Level Density Variables, Varimax Rotation
Regional access PUMA access

Retail job density near PUMA 0.57 0.75
Access to jobs via transit within 30 minutes 0.70
Access to jobs via auto within 45 minutes 0.76 0.48
Intersection density 0.72 0.32

A challenge with including density and accessibility variables in regressionmodels is that

they are very often collinear; for instance, retail jobdensity has a correlationwith job access by

auto of 0.79. To reduce this collinearity, I conducted a exploratory factor analysis of these

four density variables, and replaced them with two factors, which I term “regional access”

and “PUMA access.” The loadings for this factor analysis are shown in Table 12. A varimax

rotationwas used, which produces factors that are orthogonal (i.e. uncorrelated). The factor

analysis was estimated using factor_analyzer in Python (Biggs 2019).

There are two largely distinct submarkets of the housing market: the rental market and

the homeownership market. Most households specifically look in one of these markets or

the other, andmost landowners list their properties either for rent or for sale. Themodel pre-

sented hereinmodels both of these submarkets simultaneously, by defining a separate utility

function for rented and owned homes, and jointly modeling the choice of each household

between the rental and ownership markets. This is done by parameterizing the utility func-

tions with interaction terms between household sociodemographics and tenure choice. All

components of the utility function for a particular home, except budget, are also allowed

to vary between rental and ownership tenures. Housing units, however, are exogenously as-

signed to either the rental or ownershipmarket, and this is not adjusted within themodel to

reflect consumer demand. This is roughly reflective of the real world, where most housing

units are in one market or the other, so this is not expected to materially affect the results.

Since the formulation of the equilibrium sorting model I am using requires that house-
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holds cannot choose any residential choice that costs more than their income, I exclude

households that report making less than $15,000 per year, or that report currently paying

more in rent or in (assumed) owner costs annually than their income. Many of these house-

holds may be students who have outside income, or retirees who are living on savings, and

thus their reported income is not representative of the housing units they can actually afford.

After this filtering, I fit the model using data for 262,924 households, which are weighted to

expand out to the full population of the SCAG region.

4.4 Methods

4.4.1 Modeling Approach

The primarymodeling approach used is an equilibrium sortingmodel. The formulation

Iuse is an extensionof the onedescribedbyTra (2007; 2010; 2013), as implemented inPython

inmy open-source package eqsormo.12 Tra’s model represented the choice of a housing unit;

mymodel extends his framework to jointly estimate the choice of housing unit and car own-

ership. Several high-performance computational approaches are used in eqsormo to allow

the models to be estimated in a reasonable amount of time with reasonable computation

resources; these are described in detail in Appendix B.

This sortingmodel uses a randomutility framework to determinewhere householdswill

choose to locate and howmany cars they will choose to own, assuming that each household
12https://github.com/mattwigway/eqsormo; I used version 0.8.5 for this work. eqsormo in turn depends

on SciPy (SciPyDevelopers 2019), statsmodels (Seabold and Perktold 2010), and dill (McKerns et al. 2012).
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Table 13. Nomenclature
Symbol Definition

i Index of households
h Index of housing types (location, age category, and single-family/multifamily)
c Index of car ownership levels
xi Sociodemographics of household i
ah Observable attributes of housing type h (age category, single-family/multi-

family, neighborhood features, etc.)
Uihc Utility received by household i by choosing housing type h and car ownership

level c
Vihc Systematic portion of utility received by household i by choosing housing type

h and car ownership level c
Pihc Probability household i chooses housing choice h and car ownership level c
V̄ih Average utility of the housing choices within housing type h to household i
ph Price of housing type h
zi Income of household i
βa Coefficients for utility housing attributes
βax Coefficients for utility of interactions between housing attributes and demo-

graphics
βcx Coefficient for sociodemographic characteristic x for level of car ownership c,

generally repeated for each level of car ownership
βb Budget coefficient
γc Alternative specific constant for level of car ownership c
ϵihc random error for utility of household i choosing housing type h and car own-

ership level c
Θh Utility of housing type h that does not vary over households
ξh Type-specific unobserved utility of housing type h that does not vary over

households
µ′ Scale parameter for nested logit derivation of aggregate logit model, assumed

equal to 1
Sh Supply of housing type h
Bihc Measure of variability of utilities to household i of housing choices contained

in housing type h given car ownership level c
dh(p) Demand for housing type h given price vector p
Wi Survey weight for household i
ν Constant estimated in second stagewhich estimates locationofΘh. Since utility

is arbitrarily located, this parameter has no interpretation.
α Scalar used to scale price changes during sorting
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i chooses housing unit h and level of car ownership c to maximize its utility

Uihc = βrentxi + βa,rentah + βax,rentahxi + βa,ownah + βax,ownahxi + βbln (zi − ph)

+ ξh + γc + βcxxi + βcaah + ln Sh + ϵihc (4.1)

This is a linear-in-parameters utility specification common in discrete choice modeling.

ah is observable housing attributes of housing type h, ph is the price of housing type h, zi

is the income of household i, and xi are sociodemographic features of household i. γc is an

alternative-specific constant for car ownership. γc and all of the β parameters are estimated.

ξh is the unobserved utility of housing unit h—that is, a fixed effect. Sh is the supply of

housing units of type h. Table 13 lists all nomenclature used in this chapter. While (4.1)

shows only a single housing attribute and sociodemographic characteristic for simplicity, it

is customary to use multiple housing attributes and sociodemographic characteristics in the

model. By interacting housing attributes with sociodemographics, different households can

exhibit heterogenous preferences—for example, large families likely prefer homes with addi-

tional bedrooms, and higher-income families are less price sensitive.

By assuming that ϵihc is iid extreme value distributed, the model becomes a multino-

mial logit model (Ben-Akiva and Lerman 1985). What distinguishes the equilibrium sorting

model from themultinomial logit model is the equilibration step. While the vector of prices

ph is initially observed, a market-clearing step is undertaken wherein prices are adjusted so

that demand equals supply when the model is used for simulations. This equilibration step

is what allows me to evaluate the equilibrium after a change to the supply of different types

of housing.

Estimating themodel is a two-stage process, because the variablesah that donot vary over

households within a particular housing type h are perfectly collinear with the fixed effects ξh.

In the first stage, the parameters for interaction terms and car ownership (βax, βcx, βca, and

γc) in (4.1) are recovered, and in the second stage the base effects of housing attributes βa
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as well as the type-specific unobserved utilities ξh are recovered. To facilitate this estimation

process, I rewrite (4.1) as (Klaiber and Phaneuf 2010).

Uihc = βaxahxi + βbln (zi − ph) + ln Sh + γc + βcxxi + βcaah +Θh + ϵihc (4.2)

with

Θh = ν + βaah + ξh (4.3)

The first stage (Equation 4.2) recovers the coefficients from the interaction terms βax,

βcx, βca, and γc, as well as as an intermediate valueΘh, which represents the portion of util-

ity attributable to housing choice h that does not vary over households. The second stage

decomposesΘh into its constituent parts, and recovers βa and ξh (Tra 2007).

The first stage can be estimated as a multinomial logit model. Θh can be treated as an al-

ternative specific constant. One complication is that there aremany potential housing types,

and estimating a full set of alternative-specific constants may be computationally challeng-

ing. However, since a full set of alternative specific constants means that market shares will

be predicted perfectly, any set of γc and β values implies a set of alternative specific constants

that reproduce market shares. Bayer, McMillan, and Rueben (2004) proposes a simple and

fast contraction mapping to find the optimalΘh values from arbitrary starting valuesΘ0
h is

Θt+1
h = Θt

h − ln

∑
i

∑
c Pihc

Sh

(4.4)

By applying (4.4) repeatedly, the values ofΘh can be brought arbitrarily close to values that

reproduce the observed market shares.

The logic behind this contraction mapping is that the ASC (Θh) is reduced at each step

for alternatives that are overconsumed (i.e.
∑

i

∑
c Pihc

Sh
> 1; summing Pihc over i and c pro-
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duces the predicted demand for housing type h), and increased for alternatives that are un-

derconsumed. When demand is equal to supply, the fraction is equal to 1 and the natural

logarithm is equal to zero, and thus the process converges.

(4.4) finds only a single set of ASCs, however in this model formulation there are two

sets of ASCs—one (Θh) for housing choices, and one (γc) for car ownership levels. Similar

to how a complete set of ASCs for all choice alternatives perfectly reproduces market shares,

complete ASCs for themargins of a joint choice model perfectly reproducemarginal market

shares. It is straightforward to extend the contraction mapping to multiple sets of ASCs. I

simply alternate between (4.4) and a similar formula for car ownership

γt+1
c = γt

c − ln

∑
i

∑
h Pihc

Sc

(4.5)

where Sc represents the “supply” or observed market share of car ownership level c. Each

iteration moves both sets of ASCs closer to reproducing market shares until convergence is

achieved.

Another complication with estimating the first stage is that there are frequently a large

number of alternatives. However, since the first stage is essentially amultinomial logitmodel,

the parameters can be recovered by randomly sampling from the alternatives available to

each household (Bayer, McMillan, and Rueben 2004; Ben-Akiva and Lerman 1985, ch. 9). I

use a sample size of 10 housing alternatives for each household, and retain all car ownership

choice alternatives for each sampled housing alternative, resulting in 40 joint alternatives

per household. However, I recalculateΘh using the contraction mapping procedure above

using the full set of alternatives once the other parameters have been identified, and before

fitting the second stage.

In most applications of equilibrium sorting models, a constant marginal utility of price

is estimated in the second stage—that is, there is a term βpph in (4.1) and (4.3) (e.g. vanDuijn
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andRouwendal 2013; Klaiber and Phaneuf 2010; Bayer,McMillan, andRueben 2004). This

requires estimating βp via instrumental variables, since price is almost certainly correlated

with unobserved aspects of housing (Bayer, McMillan, and Rueben 2004).

In the Tra (2007; 2010; 2013) formulation, a nonlinear budget (income minus housing

price) term is included in the first stage. This allows households with different incomes

to have different marginal utilities of price, which is a more accurate representation of the

real world. Additionally, since the first stage contains a full set of alternative-specific con-

stants (i.e. the fixed effectsΘh) for each housing type, all unobserved features of housing are

controlled for. Assuming that preferences for the unobserved attributes of housing do not

vary over households, thismeans that instrumental variables estimation is not indicated (Tra

2007, 85).

In order to guarantee consistency of the second stage, it is necessary for the number of

choices to be large relative to the size of the choice set (Klaiber and Phaneuf 2010, 62n3).

Thus, like other authors employing this framework, I have aggregated homes into housing

types—in my case, by Public Use Microdata Area, single-family/multi-family housing type,

rental/ownership tenure, and approximate age less than or greater than 15 years.

Age is approximate because it is derived from the difference of the year of the survey in

the five-year IPUMS sample, and themidpoint of the categorized year built variable. 15 years

of age strikes a balance between includingmany properties that do not carry the “newhome”

price premium, while still including reasonable numbers of properties in each category. Due

to the aggregation of construction, this means that all homes built in 2000 or later will be

included in the “new” category.

The aggregation of alternatives requires the addition of the natural logarithmof housing

supply to the utility function, as described in Ben-Akiva and Lerman (1985, ch. 9). When
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alternatives are aggregated and represented by an average utility,13 Ben-Akiva and Lerman

propose adding two terms to the utility function. With V̄ihc representing the systematic

utility to household i of the average home of housing type h and car ownership level c, they

add two terms:

Vihc = V̄ihc + µ′lnSh + µ′lnBihc (4.6)

whereSh is the supply of housing type h andBihc is a measure of the variability of the utility

of the different housing choices contained within housing type h, given car ownership level

c since car ownership levels are not aggregated. Bihc is defined as (Ben-Akiva and Lerman

1985, 257)

Bihc =
1

Sh

I∑
i

eVihc−V̄ihc (4.7)

For the purposes of this analysis, I assume there is no variation in housing options within

a housing type, which makes Bihc equal to 1 and ln Bihc equal to zero, so this term drops

out of the utility function. Waddell (2000) used a similar specification including the log of

supply in his aggregate utility function.

Estimating µ′ is not possible because the log of supply is perfectly collinear with the

alternative-specific constants Θh. However, under certain conditions µ′ can be assumed to

be equal to 1. To understand these conditions, it is instructive to note that the utility func-

tion for aggregate alternatives given in (4.6) can be derived as themarginal choice probability
13For technical reasons, the average utility computed in this project is not a true average, because the util-

ity function (4.2) is computed based on average price, rather than being computed separately for each home
within the aggregate choice. Since price enters the utility functionnon-linearly, computingutility using average
price does not give exactly the same answer as computing the average of all utilities. However, price variation
within an aggregate alternative is assumed to be small, so budgets only vary over a relatively small range within
each alternative, and within a small range the natural logarithm approximates a linear function, meaning that
the average utility used herein approximates a true average of the utility of each home within the aggregate
alternative.
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of a nested logit model, with µ′ equal to the ratio of the scales of the Gumbel-distributed er-

ror terms (Ben-Akiva and Lerman 1985, 259). The ratio of the error terms can be assumed

to equal 1 when there is no unobserved variation at the upper level of the housing type but

rather all unobserved variation is at the level of the individual housing unit within the ag-

gregate housing types (289). Since the housing-unit-level ASCs can be seen as fixed effects

that control for the utility of any unobserved housing attributes, this is a reasonable assump-

tion.14 Thus, I assume that µ′ = 1, which allows me to estimate the first stage.

No such adjustment is needed for the ASCs for car ownership (γc), for two reasons.

Firstly, these are not aggregate alternatives. Secondly, since the ASCs for car ownership are

not decomposed by a second stagemodel, any needed adjustment for the relative availability

of larger numbers of cars in a household will simply be subsumed by the ASC.

Other authors applying equilibrium sorting models have generally not included the log

of supply in their first stage (e.g. Klaiber and Phaneuf 2010; Tra 2007, 2010, 2013; van Duijn

and Rouwendal 2013). However, the problem created by not including this term was less

severe in these cases, as these authors did not simulate the effects of changes in housing sup-

ply. Thus, the log of supply term is subsumed into the unobserved portion of utility ξh.

The main concern for these models is then that the size of the alternatives would bias the

second-stage estimation that decomposes the ASCs to constituent parts; the ASCs will par-

tially represent the sizes of the alternatives. Since I am simulating a change in the supply of

housing, properly accounting for the size of the aggregate alternatives is critical.

The second stage is straightforward to estimate; (4.3) is simply estimatedusingOLS.One
14If tastes for the unobserved attributes vary over different households, this assumption may not be per-

fectly correct. For instance, neighborhood income composition is not a covariate in my model; if neighbor-
hood income composition affects the taste of high income and low income households differently, there may
be error at the housing type level, meaning that µ′ should be less than 1.
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downside to this sequential estimation is that the standard errors fromOLSwill not account

for the error inΘh from the first stage.

The IPUMS data includes household weights. While weights are necessary to calculate

descriptive statistics, it is less clear whether they are needed when estimating a regression

(Solon, Haider, and Wooldridge 2015). For all of the regressions in this paper, I do not use

the weights in initial estimation. However, once the first-stage parameters have been identi-

fied, I recalulate the alternative-specific constantsΘh and γc using the contraction mapping

procedure described in Bayer, McMillan, and Rueben (2004) to find the values that will

clear themarket given the weights, but holding the other estimated parameters constant. To

do this, the log of supply term is replaced with the log of the supply given the weights, to

properly account for the availability of alternatives in the weighted data. These alternative-

specific constants are the ones that are decomposed by the second stage. I also use theweights

when solving for a new equilibrium, and for all descriptive statistics.

4.4.2 Solving for a New Equilibrium

The key feature that differentiates sorting models from other discrete choice models of

residential location is their equilibration step. While other discrete choice models can simu-

late the effects of changes in the covariates on choice outcomes, they do not account for the

fact that changes in amenities or the supply of various choice alternatives will have effects

on prices. As demand exceeds supply in certain locations in simulation, standard discrete

choice models do not simulate the effect that will have on prices to bring the market into

equilibrium. Modeling changing prices is critical to sort households correctly when there is

a supply change.

To solve for a new equilibrium, I first adjust the utility (4.6) with the new supply of
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each housing type implied by the land use scenario. I then find the price vector ph such that

the market shares of each housing type are equal to the demand for that housing type. An

iterative process described in Tra (2007, eq. 7.7), whichTra attributes to Anas (1982), is used.

Starting from the initial price vector p0, additional price vectors are calculated as:

Pt+1 = Pt − α

[
δDPt

δPt

]−1

(DPt − S) (4.8)

where Pt is the vector of prices for all housing types at time t, DPt is the vector of demand

for all housing types given prices Pt, and S is the vector of total supply of each housing type.

At each iteration, the derivative of demand for each housing type with regard to price of

all housing types is computed (i.e., the Jacobian matrix). This is the term δDPt

δPt
in (4.8). The

inverse of thismatrix ismultiplied by the difference betweendemand and supply to compute

how far price would have to move to bring the market to equilibrium, if demand and price

had a linear relationship. This process is repeated until the demand vectorDPt is arbitrarily

close to the supply vector S.

LikeTra (2007), I hold a single price constant, so that the systemofprices is identified and

so that any starting value P0 converges to the same equilibrium price vector. I implement

this by setting ph,t+1 = ph at each iteration, for a predetermined single value of h, rather

than using (4.8) for this single housing type. Bringing demand into equilibriumwith supply

for all other housing types perforce equilibrates supply for this housing type with a fixed

price, since total demand for all housing types equals total supply in this model form by

construction.

From a theoretical standpoint, this constant price reflects demand for housing from out-

side the region, consistent with an open-city model of urban economics. In the open-city

model, prices in the center of an idealizedone-dimensional city are assumed tobedetermined

by external demand, and all other prices in the city are determined based on that price and
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their relative location. If this price were raised (lowered), people would flee (flock to) the

city (O’Flaherty 2005, 122). Since the sorting model does not have any other modeling of

external demand, fixing this price is necessary. To be consistent with the theory, I fix the

price in downtown Los Angeles, despite the polycentricity of the region—specifically, I fix

the price in PUMA 03744, which covers the Los Angeles central business district. However,

I can only fix the price for one housing type within this PUMA. Given that I am simulat-

ing construction scenarios, I fix the price of older housing, rather than newer housing. I fix

the price for pre-2000 multifamily rental housing because it is the most prevalent type of

housing in this PUMA.

Fixing one price is also needed for a technical reason. (4.8) adjusts the prices in each

iteration by computing the derivative of demand for housing type hwith respect to price at

the current price of that housing type, and then using a linear approximation to adjust prices

closer to equilibrium. However, the linear approximation of the demand curve implied by

using the Jacobian matrix in (4.8) is likely to overshoot the market-clearing prices that are

closest to the existing prices, and find an equilibrium far from present prices. In practice,

without the fixed price, prices may become significantly negative—which, given that I do

not model household migration, can produce an equilibrium outcome, but clearly not a

realistic one.

Estimating the full Jacobianmatrix δDPt

δPt
is computationally costly; it takes approximately

3 hours to evaluate for each iteration on the machine I use for simulation (16 cores and 128

GB of RAM). Tra also presents a alternate form of (4.8) in which only the diagonal of the

Jacobian matrix is computed, and off-diagonal elements are assumed to be zero (Tra 2007,

eq. 7.7). Estimating only the diagonal takes only about 40 minutes, so this is a much faster

process. However, ignoring the off-diagonal elements means that the system may not reach

convergence. To take advantage of the speed gains of using the diagonal Jacobian, while re-

74



taining guaranteed convergence, I run 3 iterations of (4.8) with the diagonal Jacobian before

switching to computing the full Jacobian. Since with the price of one alternative fixed, there

is only a single equilibrium, any process that converges will converge to the same equilib-

rium, so starting with the diagonal of the Jacobian does not affect the final solution, only

the speed with which it is achieved.

Theparameterα in (4.8) is not presented inTra (2007), butmakes the convergence of the

price system faster andmore robust.15 The Jacobian represents a linear approximation to the

demand curve, and the portion of (4.8) to the right ofα is the search direction of a line search

towards aminimum. Moving exactly the amount suggested by the linear approximationwill

not necessarily produce themaximum absolute reduction in excess demand. The line search

process is the process of choosing the scalarαwhich one canmultiply the search direction by

in order to produce the largest reduction in the objective function. Tra implicitly assumed

α was 1, which is not guaranteed to converge for all problems, but is not incorrect if it does

converge as it did for Tra.

In most line search applications, α is loosely approximated, to avoid spending compu-

tational time in the line search that could be spent in additional iterations of the algorithm

(Nocedal and Wright 2006, 37). However, since estimating the Jacobian takes several hours,

while computing the excess demand for a givenα takes only a fewminutes, in this particular

instance it is worthwhile to spend additional computation time to find an optimal α. I use

Brent’smethod as implemented in SciPy (SciPyDevelopers 2019) to find an optimalα, using

the sumof squared excess demand as the scalar objective function. I limit Brent’smethod five

iterations and a tolerance of 0.001 to control calculation time while still producing an alpha

sufficiently close to optimal. The values of α as well as the sum of squared excess demand

15Many thanks to Sam Zhang for his assistance with numerical optimization.
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Figure 19. Evolution of α and Sum of Squared Excess Demand Over 9 Iterations of Price
Clearing

over the 9 iterations required to clear the market for a representative scenario are shown in

Figure 19.

4.4.3 Scenarios

I simulate six scenarios of housing construction in the SCAG region. Five come from

the simulations of development described in Chapters 2 and 3. One is the “Current appre-

ciation” scenario, which is the best guess at the outcome of a zoning change. In addition to

the expected scenario, I model a high development and a low development scenario, which

correspond to the low operating cost and low appreciation scenarios described in Chapters

2 and 3. I also test versions of these current appreciation and low operating cost scenarios

where redevelopment is only allowed in theHigh-Quality Transit Area as defined by SCAG,
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since some upzoning proposals have focused on areas near transit in an effort to promote

sustainable transportation and transportation affordability (Wiener et al. 2019).

The seventh scenario is based on the 2020–2021 draft Regional Housing Needs Alloca-

tion (RHNA), to compare the simulated zoning scenarios to existing plans. In the RHNA

process, the California Department of Housing and Community Development projects the

need for new housing in each of California’s regions; regional governments then divide that

allocation among the local governments within their jurisdiction. Enforcement has histor-

ically been fairly weak, but this program does attempt to encourage housing production

across the state (California Department of Housing and Community Development 2019;

Fulton and Shigley 2005, 280–283). Importantly, the law only requires that governments

plan for housing; it is left to the private sector to build (or not build) the planned housing.

InAugust 2019, the need for newhousing in the SCAG regionwas estimated to be 1.3million

units (Dillon 2019). The task then fell to SCAG and its member cities to plan for this many

units, and allocate them among the different municipalities in the region; I use draft allo-

cations published in September of 2020 (Southern California Association of Governments

2020).

Constructing scenarios from the RHNA allocations requires some additional assump-

tions. First, I assume that all housing planned for as part of the RHNA process will actually

be built—which is unlikely to happen. Even if zoning allows housing construction, it may

not be built. However, recent changes to the guidelines for the RHNA process encourage

cities to more strongly consider the feasibility of housing development (Monkkonen, Carl-

ton, and Macfarlane 2020), making this assumption less problematic.

The remaining assumptions come from the fact that the current RHNA scenarios spec-

ify the total number of housing units in each municipality in the SCAG region. They do

not separate out housing units that will be rented versus those which will be sold, and the
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plan does not currently specify where in each city the housing units will be built, nor does

it specify whether they will be single-family or multifamily units—all salient variables in my

model.

To estimate the proportion of the units that will be single-family or multi-family, I use

the proportion of housing units permitted in the jurisdiction from 2010–2018 thatweremul-

tifamily, from the Census Building Permits Survey (US Census Bureau 2018). For four cities

that did not produce any housing during this time period orwere not in this survey (Vernon,

City of Industry, Laguna Woods, and Calipatria), I used proportion of all existing housing

stock that is multifamily from the current American Community Survey. I use this to calcu-

late single and multi-family growth rates for each municipality, relative to the existing hous-

ing stock. I treat unincorporated areas as separate municipalities.

To move from city-level geography to the PUMAs used as the geographic unit in the

analysis, I assign every Census tract in the SCAG region to a municipality and assign the

growth rates for that municipality to that tract. I then take a population-weighted average

of all tracts in each PUMA to compute growth rates for single and multi-family housing,

using tables computed by the Geocorr 2014 tool (Missouri Census Data Center 2014). The

growth rates across the SCAG region are shown in Figure 20; single-family growth occurs

in exurban and rural areas, while multi-family growth is concentrated in the core of the re-

gion. I apply these growth rates to the existing rental and ownership housing stock in each

PUMA, implicitly assuming that the proportion of single-family or multi-family housing

that is rented within each PUMA will stay the same in the future.

Since the equilibrium sorting model I use requires that housing demand exactly equal

supply, I scale the overall housing stock resulting from each scenario to be equal to the num-

ber of units in the Census microdata. Therefore, I am simulating the effects of a change

in the distribution of housing, but not the total number of units. Future research could
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Figure 20. Growth Rates for Single- and Multi-Family Housing Across the SCAG Region,
Derived from RHNA Allocations
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simulate household migration and formation to more realistically represent the effects of an

increase in housing supply.
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4.5 Results

4.5.1 Model Estimation

The estimated coefficients for the equilibrium sorting model are shown in Appendix C.

Estimating the model took 14 hours on a server rented from Amazon Web Services, with

128GB of memory and a 16-core AMD EPYC processor.

Appendix C is divided into several sections, for different conceptual components of the

model. However, all of the “first-stage” components are jointly estimated through interac-

tion terms between tenure, household characteristics, housing characteristics, and vehicle

ownership levels. The first section describes the tenure choice component—that is, whether

a particular household chooses to own or rent. Higher income households and households

with senior sitizens, university educated members, or immigrants are more likely to own,

while larger households, households with more workers, and households with children are

more likely to rent, holding all else equal.

The next section describes the residential location choice model, which is jointly esti-

mated with the tenure choice model. The first coefficient represents the budget, which, as

expected, is positive—people prefer housing that leaves themmore remaining budget (recall

that the budget parameter is estimated as ln y − p where y is income and p is annual price).

Currently, a single coefficient is estimated for both renters and owners, with annual owner

costs estimated to be 4.4% of home value. In future work I intend to estimate separate bud-

get coefficients for owners and renters—something that is conceptually straightforward, but

technically rather difficult due to the existing architecture of the eqsormo package.

Parameters are estimated separately for renters and owners for the remainder of the resi-

dential location choice model. Among renters, college-educated individuals are more likely
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to choose neighborhoods with higher test scores, more accessibility both at the PUMA and

regional level, and are less likely to live in a single-family home, all else equal. Households

with more workers are similarly likely to live in more accessible areas, suggesting a desire for

access, but less likely to live in areas with PUMA access above the 90th percentile—possibly

due to the size ofunits in these areas. Immigrants are also likely to live inmore accessible areas,

but not the most accessible areas, and less likely to live in single-family homes. Households

with children are less likely to live in higher accessibility areas. Seniors are more likely to live

in single-family homes and somewhat less likely to live in accessible areas. Larger households,

unsurprisingly, aremore likely to live in single-family homes. Higher-incomehouseholds are

somewhatmore likely to live in areas with higher test scores, andmuchmore if there are chil-

dren in the household. They are also more likely to live in single-family homes and dense

PUMAs. Surprisingly, households with children are less likely to live in areas with high test

scores, except for householdswith bothuniversity-educatedmembersmaking over $100,000

per year. This counterintuitive finding likely has to do with the relatively higher housing

costs in these areas being less affordable to households with children than other households

in the same income bracket, due to the costs of caring for a child and the higher housing re-

quirements of a family. An alternate explanation could be related to omitted variables; this

is discussed below.

Results for owners are similar to those for renters. College-educated individuals aremore

likely to live in areas with higher test scores and higher access, although less likely to live in

the areas with the highest regional access. They are again less likely to live in a single-family

home. Again, households with workers tend to live in more accessible areas, but not the ar-

eas with the highest PUMA access. Immigrants are less likely to live in single-family homes,

and more likely to live in accessible areas, though not the most accessible areas. Households

with children are less likely to live in areas with high regional access, but there is no signif-
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icant relationship with PUMA access. Senior homeowners are more likely to live in single-

family homes in areas with higher test scores—possibly because they considered test scores

when they made their residential location choice in an earlier life stage, or they tend to live

in wealthier neighborhoods. Results around accessibility are mixed for senior homeown-

ers. Again, larger households are likely to live in single-family homes. High income house-

holds are more likely to live in high-test-score areas. The highest income households are

more likely to reside in single family homes than the lowest-income households, but middle

income households are less likely to. Results around accessibility are mixed. Like renters,

households with children are less likely to like in areas with high test scores, except for the

highest-income college-educated households.

The vehicle ownership choice model is presented next. Households with children are

likely to own vehicles, although less likely to own three or more—possibly due to a lack of

drivers. Higher income households, households with more workers, and households with a

college-educated member are likely to own more vehicles. All the access variables are nega-

tively correlatedwith vehicle ownership, as expected, and all but one are significant. Since the

vehicle ownership model is estimated jointly with the residential location choice model, the

tradeoffs between location and vehicle ownership decisions are explicitly modeled by these

parameters.

The final section details the second-stage model, which decomposes the alternative-

specific constantsΘh from the first stage into effects that do not vary over households. This

is the only portion of the sorting model that is not jointly estimated with the remainder of

the model. As with the residential location choice model, parameters are estimated sepa-

rately for owners and renters. These coefficients represent baselines that are then modified

by the interaction terms in the first stage. Single-family homes are relatively less preferred in

this stage, while for both renters and owners, correlations with access are mixed. Test scores
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have a negative coefficient. The residuals from the second-stage model ξh represent the type

shocks that are assumed to represent unobserved utility of each housing type that persists

into the sorting process.

Neither race, nor median neighborhood income, nor any other aspects of the potential

neighbors in a new neighborhood are included in the sorting model, though they often

would be included in non-equilibrated models of residential location choice. The reason

for this is that these aspects are endogenous—they change when households re-sort across

space. In other applications of sortingmodels, authors have included these endogenous vari-

ables and used predicted values for them during simulation (Bayer, McMillan, and Rueben

2004). However, since the model is fit using observed values for these variables, and since

the predicted and the observed variables do not exactly match, significant re-sorting occurs

evenwhenno changes to housing supply are imposed, simply because replacing the observed

values with predicted values places the market out of equilibrium; in testing, this re-sorting

due to the mechanics of the model was often larger than the re-sorting due to the develop-

ment scenario, so these variables have been excluded. The danger of course is that they may

bias the coefficients of other variables that are in themodel, for instance math test score; this

could explain some of the counterintuitive results for the relationship between presence of

children and test scores, for example.

4.5.1.1 Model Fit

The first stage of the model had a McFadden’s adjusted pseudo-R2 of 0.14, reasonable

for a joint choice model of residential location and car ownership. The second stage had an

R2 of 0.94, suggesting that the components of utility that do not vary across households

are well explained by this model. While second-stageR2 statistics are often not presented in
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examples of equilibrium sorting models, Tra (2010) reports second-stageR2 values less than

0.2 across several models—presumably because he did not include the log of supply in his

utility function, and it was captured in ξh.

4.5.2 Simulation Results

The model developed above was used to simulate the effects of the four land-use scenar-

ios described in Section 4.4.3 on car ownership and residential location choice. Importantly,

in computing the statistics that follow, at no point did I assign each household to a particu-

lar location or level of car ownership; rather, I used the predicted probability of each choice

outcome for each household to compute expected values for each of the values shown be-

low. For instance, the proportion of households owning c cars in PUMA j is computed as∑
h∈j

∑
i PihcWi/

∑
h∈j

∑
c

∑
i PihcWi.

Each scenario took 13–20 hours to simulate on Amazon Web Services machines with

128GB of RAM and 16-core AMD EPYC processors.

The first travel-related outcomes of this dissertation are presented in Table 14, which

summarizes household vehicle ownership for the 6 scenarios. Vehicle ownership is quite

stable across all scenarios, ranging from 2.029 to 2.033 vehicles per household. The lowest

vehicle ownership occurs in the RHNA scenario, suggesting that SCAG has somewhat suc-

cessfully guided growth planning into areas where car ownership is less necessary. However,

the changes are so small between scenarios that is difficult to say with certainty whether they

represent true differences between the scenarios, or amplified noise in the models.

The second section of Table 14 again shows vehicle ownership levels, but only for the
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Table 14. Predicted Household Vehicle Ownership for Different Scenarios
Percent of households

0 cars 1 car 2 cars 3+ cars Average

Existing (model estimation sample) 4.4% 28.6% 39.9% 27.1% 2.033
Fitted values 4.4% 28.6% 39.9% 27.1% 2.033
RHNA 4.5% 28.8% 39.8% 27.0% 2.027
Current appreciation 4.4% 28.6% 39.9% 27.1% 2.033
Low appreciation 4.4% 28.6% 39.9% 27.1% 2.033
Low operating cost 4.4% 28.6% 39.9% 27.1% 2.032
Current appreciation (HQTA) 4.4% 28.6% 39.9% 27.1% 2.032
Low operating cost (HQTA) 4.5% 28.7% 39.8% 27.0% 2.029

Residents of new buildings only

Current appreciation 2.9% 24.5% 41.8% 30.8% 2.159
Low appreciation 2.5% 22.5% 42.4% 32.7% 2.217
Low operating cost 3.6% 27.1% 41.1% 28.2% 2.080
RHNA 4.8% 29.7% 39.4% 26.1% 1.999
Current appreciation (HQTA) 5.1% 31.3% 39.7% 23.9% 1.945
Low operating cost (HQTA) 4.7% 30.5% 40.0% 24.7% 1.972

households choosing to live in the new buildings.16 Here, there is much more variation.

The lowest car ownership levels among new building residents occur in the twoHighQual-

ity Transit Area scenarios—suggesting that these developments may have positive transport

outcomes, or at least attract people predisposed to lower car ownership (which is the stronger

effect remains anopen topic of research; seeGuan,Wang, andCao (2020) for a recent review).

The highest car ownership occurs in the two “business as usual” scenarios, where the only
16The model does not specifically forecast which households will live in the new housing, because the new

housing does not exist in the baseline case and thus its utility cannot be estimated. Instead, the model fore-
casts which households are likely to choose housing built since 2000. Within the homes built since 2000 in
each PUMA and multifamily/single-family aggregate choice, a certain percentage of the homes are provided
by the scenario. The probability of choosing a single or multifamily home built since 2000 in each PUMA is
multiplied by the percentage of such homes that are provided by the scenario to estimate the probability that
each household chooses one of the homes provided by the scenario. These probabilities are used as weights to
calculate car ownership statistics for households residing in the new housing.
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policy change is to allow multifamily homes throughout the region; by not directing these

homes geographically, their residents own more cars.

A key concern with redevelopment is equity. One of the outputs of the equilibrium

sorting model is a set of new prices for each housing option that represent the simulated

demand at market equilibrium. These prices are displayed for renters in Figure 21. Rents

remain relatively constant in most scenarios. In the aggressive low operating cost scenario,

rents fall in some areas that see redevelopment and rise in others. In part, this is because

newer homes tend to cost more than older homes, all else equal, so even though there is

some reduction in prices due to unit mix effects, all scenarios make the housing stock newer

overall. This is a difficult problem to solve—simply not building is not a solution, because

for older affordable homes to exist in the future, they need to be built now. Rent increases

in outlying areas of Riverside, San Bernardino, and Imperial counties likely result from the

mechanics of the estimation process. Since the overall supply of housing is held constant

and only the spatial distribution is adjusted, these areas that see little development have their

housing supply reduced by this scaling process. This is economically consistent with the

open city theorywhere building newbuildings in the center attractsmigration,making these

outlying areas have relatively less of the regional housing stock, but a critical assumption of

that theory is that the region functions completely as a signle housing market, whereas in

actuality few if any households consider housing both in Imperial and Los Angeles counties,

for example.

Another lens to evaluate equity in the outputs of the model is the income distribution

across space. US cities are often segregated by income; one possible goal for zoning reform is

to reduce this segregation. In order to evaluate the changes to the spatial distribution of in-

comebrought onby these scenarios, a baselinemust be established. Since the residential loca-

tion choicemodel does not fit perfectly, the predicted spatial distribution of income is flatter
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Figure 21. Changes in Monthly Average Rents Under Different Scenarios, Weighted
Average of Single- and Multi-Family Rents
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Figure 22. PUMA-Level Median Income, Fitted vs. Observed

than the observed distribution even before any changes have been made to housing supply;

the standard deviation of PUMA median income is $17,508 for fitted values vs. $22,800 for

observed values. These differences between fitted and observed values for PUMA median

income are shown in Figure 22.

Using the fitted values as a baseline, I then compare all scenarios to that baseline; results

are shown in Figure 23. Most scenarios show no large changes in median income—the num-

ber of residents in the new units simply is not enough to move the area median income.

However, again in the aggresive low operating cost scenario, median incomes fall through-

out the areas that are heavily redeveloped. Since I do not model changes to income at the

household level, all changes to median income are due to higher or lower-income popula-

tions moving to particular locations.
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Figure 23. PUMA-Level Median Income, Scenarios vs. Fitted
90



Another important question iswho these newbuildings are serving. Figure 24 shows the

median income of the residents of new buildings under each of the development scenarios.

Inmany parts of the region, especially the heavily redeveloped areas west of Los Angeles and

inOrangeCounty, themedian income of the residents of the newbuildings is above $75,000.

This is concerning fromanequity standpoint, althoughperhapsnot surprising; newhousing

tends to be occupied by wealthier households. Recall, though, that these areas are already

quite wealthy; in some areas, these new residents withmedian incomes over $75,000 actually

lower the area median income (Figure 23).

A related question is whether housing policy is creating diverse neighborhoods. Figure

25 shows the changes to the interquartile range of income after the scenario. A larger in-

terquartile range means more income diversity. Many of the areas where redevelopment is

concentrated see a reduction in the interquartile range of income after simulation—even

those that also see a reduction in their median income. This is likely because the newcomers

have slightly below-median income for the area, but their income is still above the 25th per-

centile. Since they are similar to a large swath of the existing population, the incomediversity

declines even as the median income declines.

4.6 Limitations

The key concern anytime a statistical model is used for forecasting is that correlation

does not imply causation; just because themodel has estimated particular relationships does

not mean that those are causal. Causality could be reverse, or due to an additional variable

not included in the model. While causal inference techniques are widespread in economics,

most travel demandmodels use regressionmodels and try todefend against issues of causality
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Figure 24. PUMA-Level Median Income, Residents of New Buildings Only
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Figure 25. Change in Interquartile Range of PUMA Income
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by including a broad range of covariates that are theoretically connected to the outcomes of

interest. While thismodel does includemany covariates, there are additional ones that could

be included to improve the predictions.

The car ownership model assumes that there is a relationship between the built environ-

ment and car ownership. While this has repeatedly been shown to be true, much research

also shows that estimates of such a relationship can be biased due to self selection. House-

holds predisposed to own fewer cars, for instance, may preferentially live in denser, walk-

able neighborhoods. To the extent that those preferences are not reflected in the sociode-

mographic features in the sorting model, the effect of moving to a different neighborhood

on car ownership may be overestimated. Cao, Mokhtarian, and Handy (2009) reviewed a

number of studies and concluded that there is an effect of the built environment on trans-

port outcomes exists, there is also an effect of self-selection. They describe several strategies

for accounting for this omitted variable bias. In future research, these strategies could be

employed to improve the estimation of car ownership.

Furthermore, the car ownership model does not consider parking availability, which has

a significant causal relationship with car ownership (Millard-Ball et al. 2020). This is a rather

small concern as the vast majority of housing in Southern California does have off-street

parking, but is a limitation of the model. The development scenarios also do not vary the

amount of parking available per unit. If future research did vary parking levels, accounting

for parking in the residential location choice model would be critical.

Additionally, this model assumed away any dynamics of migration or household forma-

tion. Additional housing construction would likely result in both of these processes, as

people from outside the region migrate in and households within the region split up (for

instance, roommates or adult children living at home move out). This model scaled the

number of new units tomatch the existing household population, which is defensible if one
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assumes the future population will be similar to the existing population in terms of sociode-

mographic distribution. Immigration and household formation could, however, change so-

ciodemographic distributions.

4.7 Discussion and Conclusion

This chapter has demonstrated the application of an equilibrium sorting model to sim-

ulate a land-use change and its effects on transport outcomes. While equilibrium sorting

models have been used in a (small) number of papers in economics, they have rarely been

used in land use-transport interaction research. Thus, an important contribution of this

chapter is simply to demonstrate these models in this type of application. Their ability to

simulate changes to outcomes that result from residential relocation in response to a shock

to the housing supply is something that other models of residential location choice cannot

easily do.

Additionally, I have applied the model to a class of problem I have not seen it applied to

in the past—an exogenous change in housing supply. This requires appropriately account-

ing for the size of aggregate alternatives, something that many authors thus far have not

addressed. Given the current policy discussion around increasing housing supply to ease

affordability problems, models that can evaluate such changes are valuable. Equilibrium

sorting models are one option.

The sorting model suggests that the residents of the new development will be relatively

high-income, although in some cases they are still lower-income than the existing residents

of the area they are moving in to. While gentrification is less of a concern since redevelop-

ment largely occurs in relatively high-income areas, it is also true that the new housing is not

directly easing housing housing supply for the lower-cost end of the market. It could still
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benefit this market segment indirectly, in the short term by reducing pressure to gentrify

lower-income neighborhoods, and in the long term through housing filtering, but direct

provision of housing for lower-income households in general would require government

subsidy.
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Chapter 5

POPULATION SYNTHESIS

Activity-based travel demand models simulate the travel demand of a synthetic popula-

tion of households with associated sociodemographic and geographic characteristics. Many

models create synthetic populations for small areas based onmarginal distributions of demo-

graphic characteristics from small areas combined with public use Census microdata from

larger areas (e.g. Konduri et al. 2016). This approach is not possible in this research because

the small-area marginal control distributions are no longer valid once households have re-

sorted in response to the housing supply shock.

The output of the sorting model cannot be used directly, because the geographic speci-

ficity is too coarse; while there are only just over 100 PUMAs, most travel demand models

have thousands of zones. Within-PUMAtravel distances aremuch too variable formeaning-

ful modeling ofmode choice, destination choice, etc., and themajority of trips likely remain

within a single PUMA. These results must be disaggregated for use in the travel demand

model.

While sociodemographic control totals are not possible due to household re-sorting, I do

have exogenousmarginal distributions of housing types in each tract, since the development

model presented inChapters 2 and 3 are disaggregate. I use these distributions todisaggregate

the PUMA-level results from the sorting model to the tract level. Up until this point, I have

not assignedhouseholds to specific residential locations, tenure choices, or vehicle ownership

levels, but have rather retained theprobabilities that eachhouseholdwouldwouldmake each

possible choice. For the travel demandmodel, I need to assign households to specific choices,

so I also do this as part of the population synthesis process.
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5.1 Methods

The output of the sortingmodel is the probability that every householdwill choose each

combination of PUMA, age of housing, multi- or single-family housing, tenure choice, and

vehicle ownership level. I control for age of housing and multi- or single-family housing at

the tract level. I calculate the number of housingunits in every tract in each of four categories,

pre-2000 and 2000 or later multifamily and single family homes, using 2013–2017 American

Community Survey data. I then adjust these unit totals based on the scenarios developed in

the previous chapters.

To disaggregate to the tract level, I draw households from the population to match the

number of housing units implied by the scenario in a particular tract/age/multifamily-single

family bin. I weight this draw by the probability a particular household chooses to live in

that tract’s PUMA and the age/multifamily-single family bin in question, multiplied by the

household’s weight in the PUMS. This way, the demographics forecast at the PUMA level

are disaggregated to the tract level based on housing characteristics, which may not be ho-

mogenous across tracts. It is impossible to use demographic control totals as would typically

be used in population synthesis (Konduri et al. 2016, e.g.), since the demographics are ex-

pected to change as a result of the sorting model.

Using the probability that a household chooses a particular tenure choice and level of

vehicle ownership given that they have chosen thePUMA/age/multifamily-single family bin

they have been drawn into, I assign each drawn household a vehicle ownership level and a

tenure choice. Since the sorting model only forecasts vehicle ownership in 4 categories (0–

3+), and the travel demandmodel uses 7 (0–6+), I disaggregate the 3+ category in simulation

to 3, 4, 5, or 6+ vehicles randomly according to the proportions of 3+ vehicle householdswith

each of these levels of vehicle ownership in the IPUMS. I repeat this population synthesis
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process for each scenario described in the previous chapter, since the number of housing

units in each bin varies by scenario.

While most of this dissertation was implemented in Python, the core of the population

synthesis algorithm is implemented in Julia (Bezanson et al. 2017) due to its superior perfor-

mance on very large datasets (in this case, probabilities that each household chooses every

possible combination of tract, single/multi-family home, pre- or post-2000 construction,

and vehicle ownership), using SQLite to manipulate larger-than-memory data. The popu-

lation synthesis process takes approximately two hours per alternative, on a quad-core Intel

i7 with 16GB RAM and a 1 TB magnetic SATA disk.

5.2 Results

In order to evaluate the quality of the population synthesis process, I compare the char-

acteristics of the synthetic population generated using housing characteristics and forecasted

choices from the baseline scenario (i.e. before the change to housing supply). This compari-

son is particularly important in this case, since demographic controls have not been used as

they would be in a traditional population synthesis. Therefore, it is not guaranteed that the

synthetic population will be demographically similar to the actual population.

Figure 26 compares the synthetic population to 2012–2017 ACS proportions for age and

sex within each county.17 By and large, the synthetic population is quite close to the control

totals, indicating that both age and sex distributions are well controlled by the synthesis pro-
17Control totals are the portion of people in a particular age/sex category out of the entire population, so

this graphic also indicates a balance between males and females.
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Figure 26. Comparisons of Actual and Synthetic Populations by Age and Sex
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Figure 27. Comparisons of Actual and Synthetic Populations by Tenure and Household
Size
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Figure 28. Comparisons of Actual and Synthetic Populations by Income
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Figure 29. Comparisons of Actual and Synthetic Populations by Vehicle Ownership
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cess. Figure 27 compares distributions by tenure and household size, and again the synthetic

population does a good job of replicating the observed population.

Figure 28 compares the incomes of the synthetic population with those of the overall

population. The major deviation from representativeness here is that there are no house-

holds making under $15,000 in the synthetic population, because they were removed from

the simulation process in order to make the sorting model possible. This is a limitation of

this dissertation, and may result in overstated congestion and driving results because house-

holds in this income group likely travel less, and less by car, than other groups. This is likely

also the explanation for why household car ownership is somewhat higher in the synthetic

population vs. the actual population (Figure 29); the lowest decile of income represents 41%

of carless households in the US (King, Smart, and Manville 2019).

The discussion thus far has focused on county-level demographic control totals, which

are satisfactorily matched by the synthetic population. However, since I am disaggregating

to the tract level, county-level demographics may dilute representativeness at smaller scales.

Figure 30 plots tract-level median income from the synthetic population and the actual pop-

ulation. As discussed above, the synthetic population generally has higher tract-levelmedian

incomes than the actual population, and there is less variation inmedian incomes in the syn-

thetic population than there is in the actual population, since the model does not perfectly

predict household location choices. However, the higher income tracts tend to align in both

the actual and synthetic populations, and the tract median income of the synthetic popula-

tion predicts observed tract median income with anR2 of 0.42.

Overall, the synthetic population generator does a relatively good job of drawing house-

holds that are similar to the actual population in the baseline scenario, and thus it can be

used to generate synthetic populations resulting from the sorting process under each of the

supply changes examined in the previous chapter.
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Figure 30. Comparison of Tract Median Income, Actual and Synthetic Populations
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Chapter 6

ACTIVITY-BASED TRAVEL DEMAND MODEL

To more fully understand the impacts of the modeled changes to land use on travel, I

use an activity-based travel demand model to simulate travel across Southern California, us-

ing the residential location and vehicle ownership choices described in Chapter 4. I use the

ActivitySim framework to implement thismodel (AssociationofMetropolitanPlanningOr-

ganizations 2019). ActivitySim comes with an implementation of the Metropolitan Trans-

portation Commission (San Francisco Bay Area)’s Travel Model 1 (Erhardt et al. 2012). I put

the outputs of the sorting model into the format required by this model, and apply it to un-

derstand the granular transportation effects of the scenarios simulated in Chapter 4. Due to

household travel survey data availability, however, I do not reestimate any of the models for

Southern California. I use static traffic assignment algorithm to derive congestion metrics

from the model output.

Specifically, I evaluate shifts in mode choice, vehicle kilometers traveled, and traffic con-

gestion. The discrete-choice models in ActivitySim simulate the school, work, and other

destination choices for all tours taken by households in the synthetic population. Activi-

tySim models work and school location, as well as primary and secondary trip destinations

for non-mandatory tours (ActivitySim team 2020). Due to cost and time constraints, I only

model the most aggressive development scenario, the low operating cost scenario.
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6.1 Model Inputs

Travel Model 1 expects four types of inputs: households, persons, land use, and skims.

Households and persons come from the synthetic population generation process described

in Chapter 5. Land use data are derived from existing land use and outputs from the prof-

itability and sales models in Chapters 2 and 3, and are described in detail in Section 6.1.1.

Skims, or zone-to-zone travel times, are estimated using various data sources and are de-

scribed in Section 6.1.2.

6.1.1 Land Use

ActivitySim requires a broad array of land use variables for each analysis zone, Census

tracts in my case. Some of these, such as total households, total population, and population

in each age band, are calculated based on the synthetic population. Total land acreage comes

from the Census Bureau, and total residential and commercial acreage are derived from the

SCAG land-use dataset. Residential vacant properties are additionally included in the total

residential acreage, as they may be redeveloped under the scenarios developed above. Em-

ployment statistics are derived from the US Census Bureau LEHDLODES dataset, and are

assumed constant in all scenarios. High school enrollment is derived from 2016–2017 en-

rollment numbers from the California Department of Education (California Department

of Education 2017) and geocoded using the California School Campus Database (Califor-

nia School Campus Database 2021). College enrollment comes from the Integrated Postsec-

ondary Education Data System (National Center for Education Statistics 2017).

There is an urban area type category which is documented to be based on a linear combi-

nation of population and housing density (Ory 2016). However, the urban area types in the
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example dataset do not match the documented density categories. Furthermore, there is no

clear density-based division of the example dataset into urban area zones. Some suburban

zones, for example, are more dense than other zones classified as urban. Since area types are

almost always contiguous across multiple nearby analysis zones in the example dataset, I use

an ad-hoc smoothing procedure where each analysis zone’s area type is first assigned based

on density, and then replaced with themost common area type among itself and all adjacent

area types, using a Queen’s case adjacency matrix calculated with PySAL (Rey and Anselin

2007). The topography of the tract is present in Travel Model 1 in three categories from

steep to flat. Using 1/3-arc-second digital elevation models from the US Geological Survey

3D Elevation Program (US Geological Survey 2021), I calculated the slope of each cell using

GDAL (GDAL/OGR contributors 2021), and used Zonal Statistics inQGIS (QGIS Project

2021) to compute the median slope in each tract. While the exact definitions of the three

slope categories in TravelModel 1 are not, to my knowledge, documented, using themedian

slope in the analysis zone with cutpoints of 1.68% and 2.77%, correctly classifies 91% of the

analysis zones in the example Travel Model 1 input data. These cutpoints were determined

using a trivial decision tree model estimated using scikit-learn (Pedregosa et al. 2011).

I assume that all land uses except housing stay constant between the baseline and the

scenario. This means that any forecast travel changes are due to people moving to more ac-

cessible areas, not areas becoming more accessible as land use changes—for instance, due to

stores opening in a now more densely populated area. In particular, this is problematic for

high school enrollment, as school districts will likely adapt fairly quickly to changes in pop-

ulation distribution; distances to high school may be overestimated by the model. While

ActivitySim supports capacity restrictions on school and work locations through “shadow

pricing,” which adjusts utility of these destinations to meet capacity, I do not use this fea-
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ture. This somewhat ameliorates these concerns about land use and school enrollment in

particular staying constant between the baseline and the scenario.

6.1.2 Skims

Skim matrices are zone-to-zone travel time matrices. This model uses the 3956 Census

tracts in the SCAG region as the zones of analysis. There are skims for walking, bicycling,

driving, and transit, which represent travel times and distances between tract centroids. For

intrazonal trips, I assume travel times and distances are 1/2 of the travel time to the near-

est neighboring tract, as was done for highway skims in the Bay Area deployment of Travel

Model 1 (Ory, Tsang, and Zorn 2019, line 114).

6.1.2.1 Walking and Bicycling

Walking skims are calculated by computing the distance on foot from the centroid of

each zone to every other zone, using data fromOpenStreetMap and theOpen-Source Rout-

ing Machine (OSRM) routing software,18 (Luxen and Vetter 2011) with default walking set-

tings as shippedwithOSRM.Bicycling distancewas assumed tobe equal towalkingdistance,

although different travel speeds are of course assumed by the model.

6.1.2.2 Driving

Driving skims are also calculated using OSRM. Since data on segment-level traffic con-

gestion are not available at a price within this researcher’s means, only free-flow travel times
18Version 5.24.0 was used for all computations herein.
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can be estimated by OSRM. However, Los Angeles is infamous for its traffic congestion, to

the point that it is a key element of popular culture (Jackson 1991; D. Chazelle 2016). Traffic

congestion indubitably plays a role in travel decisionmaking, and accounting for it is criti-

cal. Thus, I adjust free-flow skims to account for congestion in each time period using data

from Uber Movement (Uber 2020). This dataset provides average weekday tract-to-tract

travel times for the immediate environs of Los Angeles, at each hour of the day. However,

it does not provide spatial coverage across the full SCAG region. Thus, I use this dataset to

create a model to predict the level of traffic congestion for a particular O-D pair of tracts at

a particular time of day.

The dependent variable in this analysis is the ratio of congested travel time to free-flow

travel time, which I assume is equivalent to travel time in the overnight hours. The covariates

I use to predict the congested travel time ratio are the hour of the day, the network distance

between the tracts as computed by OSRM, and population and employment density for

several relevant areas. Specifically, I consider population and employment density in the

origin and destination Census tracts, and the 25th, 50th, 75th, and 95th percentile density

of tracts in 2-km bands from 0–8 km around each origin and destination tract, and in 2-km

buffers from 0–8 km around the straight line connecting the origin and destination tract

centroids (to account for possible congestion along the way). To avoid including a tract in

multiple bands, and to speed computation, a tract is included in a band iff its centroid lies in

that band. The process of determining band covariates is computationally intensive, given

thenumber of possible combinations of tracts and the complexity of the spatialmathematics,

so it is run using multiprocessing on a quad-core Intel i7 with 16GB of RAM.

This results in 126 covariates, a large number for an econometric model. However, since

the goal of this model is to predict rather than to explain, I turn to machine learning and

use a random forestmodel to identify relationships between these covariates and congestion.
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Table 15. Time Windows Used in Activity-Based Model
Name Start time End time

Early morning 3:00 AM 6:00 AM
Morning 6:00 AM 10:00 AM
Midday 10:00 AM 3:00 PM
Afternon 3:00 PM 7:00 PM
Evening 7:00 PM 3:00 AM

Random forests estimate a large number of decision trees on random subsamples of the data,

and then average the results to create a prediction (James et al. 2013, ch. 8). In this case, I use

100 trees as this provides good results in reasonable computation time. For tractability, I fit

the model on a sample of 100,000 Census tract-hour of day pairs from the UberMovement

dataset; the actual estimation sample is slightly smaller, as I exclude 200 randomly selected

tracts from the estimation in order to use them to evaluate model fit. I used scikit-learn

to fit the model (Pedregosa et al. 2011).

The testR2 of this model is 0.67. TestR2 is computed on the tract-hour pairs that were

not were not included in the model estimation, to avoid reporting a biased value due to

possible overfitting. Since congestion levels are indubitably correlated for trips leaving from

or going to the same Census tract, I excluded 200 randomly-selected Census tracts from the

training data entirely, and computed the testR2 based only on congestion levels among these

tracts.

The ActivitySim/TM1 model estimates travel in 5 time windows (Table 15). I use the

model to forecast the congested travel time ratio for all tract pairs in the region for each time

window, using a point near the middle of the time window. I multiply the free-flow travel

time estimated byOSRMby this predicted value to produce an estimate of congested travel

time for each pair of Census tracts in the region.

It is possible that the testR2 overstates the predictive power of themodel, for two reasons.
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First, the observations are not independent, so the training process may have seen similar

observations (for the same Census tract pair at a different time, for example). Second, the

model is extrapolating information from Los Angeles County to other Southern California

counties. This is particularly a concern, since the highest-importance feature in themodel by

far is the hour of the day, so the model may assume Los Angeles County levels of congestion

in remote Imperial County.

ActivitySim requires estimates for HOV and toll lane travel times in addition to single-

occupant vehicle travel times. I assume thatHOVand toll lane travel times are 10%below the

estimated SOV travel time in the AM and PM peak periods, and equivalent during the off-

peak. Most toll facilities in the SCAG region are toll lanes rather than toll roads, so off-peak

there is little differentiation in travel time between tolled and untolled facilities.

I assume that tolls are charged at $1.57/mile during the peak, and $1.48/mile offpeak,

based on the cost to traverse the entirety of theCaliforniaRoute 73 toll road (TheTollRoads

of Orange County 2021). I assume that 1⁄4 of the distance of each tolled trip takes place on

tolled facilities, since these facilities are relatively rarewithin a significant network of untolled

freeways.

6.1.2.3 Public Transport

To compute tract-to-tract travel times, I use my open-source public transport routing

package TransitRouter.jl19 combined with General Transit Feed Specification data from

across Southern California, representing public transport schedules in early 2018—roughly
19https://github.com/mattwigway/TransitRouter.jl
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in line with the vintage of other data in the model.20 I compute travel times by public trans-

port at a time near the middle of each time window (Table 15), for walk and drive access

and egress from public transport (walk and drive access and egress times are computed with

OSRM). I allow walking up to 1km to the first stop, from the last stop to the destination,

and at each transfer. For driving access and egress, I allow travel up to 20km. Due to techni-

cal limitations, it is not possible to account for traffic in driving access and egress, so they are

assumed to have free-flow travel times.

I derive several metrics about every trip, including in-vehicle time, wait time, walk time,

driving time, and number of transfers. Since different public transport modes may attract

different segments of the population, Travel Model 1 requires trip information for trips by

several public transport modes. Since many trips combine multiple modes, I allow access

to a primary mode by other modes; which modes I allow to be used to access each primary

mode are shown in Table 16.

ActivitySim/Travel Model 1 requires an estimate of fares for each skim. I simply assume

a flat fare of $1.75 for local bus, light rail, and heavy rail; $2.50 for express bus, and $5.00

for commuter rail, based on current LA Metro and Metrolink pricing. In reality, fares are

much more complicated and there may be multiple optimal tradeoffs between travel times

and fares (Conway and Stewart 2019), but this detail is not represented in this model. Fur-

thermore, some residentsmay choose to purchase a public transport pass allowing unlimited

rides, which changes the marginal costs of choosing transit; this detail is not modeled by Ac-

tivitySim.

20Many thanks to Evan Siroky and Sasha Aickin for providing me with access to this curated dataset of
schedule data.
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Table 16. Allowed Access Modes for Each Primary Public Transport Mode
Access modes

Primary mode Local bus Light rail Heavy rail Commuter rail Express bus

Local bus ✓
Light rail ✓ ✓
Heavy rail ✓ ✓ ✓
Commuter rail ✓ ✓ ✓ ✓
Express bus ✓ ✓ ✓ ✓
All public transport ✓ ✓ ✓ ✓ ✓

6.2 Methods

6.2.1 Travel Behavior

ActivitySim and Travel Model 1 are a series of discrete choice models that build on each

other to microsimulate many household and personal decisions, including mode choice, de-

parture time choice, and destination choice. ActivitySim coordinates travel decisions at the

household level for additional realism; more details are available in (Waddell et al. 2018). I

make two slightmodifications toTravelModel 1 before applying it to the SCAGregion. First,

I remove the auto ownership model, as auto ownership is estimated by the sorting model.

Secondly, I remove the availability of free parking model and simply assume all trips have

free parking—true for the vast majority of trips in the US. I ran travel model simulations on

a 96-core AMD EPYC system with 768 GB RAM rented from Amazon Web Services; each

run took approximately 6 hours and cost approximately $32 for computation.
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Figure 31. Normal (Left) and Turn-Based (Right) Graph Representations of the Street
Network

6.2.2 Congested Network Assignment

One of the outputs of ActivitySim is a trip matrix; that is, the forecast number of trips

between each pair of zones during each time period of the simulation. While I used data

from Uber Movement to create skim matrices to use in model estimation, I cannot use that

data forecast congestion under a future transport scenario. Instead, I extract the number of

vehicle trips for each O-D pair at each time of day, and perform a static traffic assignment.

To find the congested equilibrium, I use a Frank-Wolfe iterative algorithm, which iteratively

updates link flows and costs until an equilibrium is found (Ortúzar andWillumsen 2011, 398;

Rambha 2020; Boyles 2019). I compute congestion metrics for both the base scenario and

the low operating cost scenario using this algorithm, so that results are comparable.

The network for the Franke-Wolfe algorithm is derived from OpenStreetMap (Open-

StreetMap contributors 2020). Like Waddell et al. (2018), I retain all tertiary roads in my
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network, as well as unclassified roads21. I use my open-source OSMPBF.jl22 Julia library to

read the OpenStreetMap data and convert it into a routable network.

The most obvious representation of a road network in graph format is to make each

intersection a vertex and the roads between them edges (Figure 31a). However, since most

routing algorithms for weighted graphs do not support costs assigned to verices, only edges,

this does not lend itself to representing the time required tomake turns. Instead, I represent

the street network as a turn-based or dual graph, where each street segment is represented by

a vertex, and connections/turns (via intersections) to other street segments are represented

as edges (Figure 31b). This allowsme to attach both the traversal time of the segment and the

turning time at the end of the segment to each edge, because each edge implies a particular

turn (Winter 2002).

Any traffic assignment algorithm requires some estimation of congested travel times on

the links in the network, which is generally a function of their free-flow travel time multi-

plied by some factor based on the volume/capacity ratio of the link. I derive free-flow travel

times by roughly duplicating the travel time computations used by OSRM, which was used

to derive the skims. I adjusted travel times for congestion using a simplified version of cost

function used in the existing SCAG four-step model (Southern California Association of

Governments 2012); most notably, I did not differentiate capacities based on area type or

widths of intersecting streets. I cannot use Uber Movement data here because it only repre-

sents origin-destination travel times, not the link-level travel times needed for traffic assign-

ment.

I use a slight variation of the typical Frank-Wolfe assignment process due to my use of a
21In OpenStreetMap parlance, “unclassified” is, confusingly, a roadway classification that is below tertiary

roads but above residential streets.

22https://github.com/mattwigway/OSMPBF.jl
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turn-based graph. In a turn-based graph, each street segment is represented by a vertex, and

the set of edges that connect that vertex to others models traversal of that street segment as

well as any turnor intersection costs. Therefore, onephysical street segment is typically repre-

sented bymultiple edges in the turn-based graph. To address this, I calculate the congestion

on each edge using the flows from all of the edges making up one physical street segment.

I implemented the traffic assignment in Julia using the LightGraphs package

(Bromberger, Fairbanks, and contributors 2017), as well as the ForwardDiff package for

automatic differentiation (Revels, Lubin, and Papamarkou 2016). I ran it on a 64-core, 128

GB arm64 server rented from Amazon Web Services, although such a large machine is not

required. The most computationally intensive part of the assignment process is using a

routing algorithm to derive the fastest trips from each origin to every destination after every

iteration of the algorithm. This process is easily parallelized, so speed scales roughly linearly

with the number of cores. As suggested by Boyce, Ralevic-Dekic, and Bar-Gera (2004), I

run the process until the relative gap (which is an estimate of how far aggregate observed

travel times are above optimal travel times) is less than 0.01%. Results converged after

730–740 iterations in about 13 hours, costing approximately $28 for computation. I use the

vehicle trip matrices produced by ActivitySim for trips between 6 and 10 AM. Since the cost

functions are based on hourly flows, I multiply these vehicle flows by 0.35 to estimate the

hourly trip demand for the peak hour (assuming that travel demand is somewhat peaked

even within the 6–10 AM time window).

I only perform congested assignment for trips by private vehicle; I assume that public

transport, walking, and biking have sufficient capacity that they do not become congested.

Furthermore, I assume road congestion has already been taken into account in the public

transport schedules used to create the public transport skims.
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Figure 32. Observed and Simulated Trip Lengths in Southern California

6.3 Validation

To validate the travel demand model, I first ran the model using base conditions, and

compared the forecast travel patterns with the mode splits, trip length distributions, and

time-of-day distributions to the 2017 National Household Travel Survey. I used the Califor-

nia add-on sample available from the Transportation Secure Data Center (Transportation

Secure Data Center 2019), and filtered it to only trips made with the SCAG region by house-

holds residing in the SCAG region, to match the households and travel that was simulated.

I used 5-day weights to estimate observed behavior on a weekday, to match the target day of

the ActivitySim model.

The model does a good job of reproducing observed conditions in Southern Califor-

nia. As Figure 32 shows, themodel closely replicates the observed distibution of trip lengths,

slightly underrepresenting shorter trips relative to longer trips. Departure times also match

closely, although the simulated values show a slightly later AM peak as well as more some-

what evening trips than the observed values (Figure 33)—possibly due to different cultures

aroundworking hours and the influence of the tech industry in the San Francisco areawhere
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Figure 33. Observed and Simulated Hour of Departure for Trips in Southern California
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Figure 34. Observed and Simulated Trip Mode Choice in Southern California

the model was originally estimated. The model also reproduces observedmode choice fairly

well (Figure 34), although it significantly overrepresents the use of taxis and ridehailing;most

of the additional ridehailing trips appear to be drawn from walking and, to a lesser extent,

driving alone. This overrepresentation is likely due to the model originally being estimated

in the San Francisco area, where ridehailing began and which still has the highest share of

ridehailing users in the country (Conway, Salon, and King 2018).

All in all, themodel does quite a good job of reproducing baseline conditions evenwhen

transferred from one city to another. The main concern when applying a model from one

urban area in another one is that themodelwill not reproduce local conditions; this is not the
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Figure 35. Person-Trip Mode Choice, Low Operating Cost Scenario vs. Baseline

case with the ActivitySim model when transferred to Los Angeles, even without any model

re-estimation.

6.4 Results

The travel demand model forecasts minimal changes in travel due to implementation

of the low operating cost scenario (the most aggressive redevelopment scenario). Per-capita

VKT is forecast to increase very slightly due to the change in land use, from 29.79 to 29.87

km/day. This difference is small enough that it could simply be due to accumulated uncer-

tainty in themodels, although a slight increase in VMT is consistent with the slight decrease

in job accessibility due to the newunits (see Section 3.4). Mode choice changes are essentially

nonexistent between the low operating cost and baseline scenarios (Figure 35).

A key concern with any large-scale redevelopment is equity. Even if aggregate travel be-

havior is stable, if some demographic groups experience significant changes in their travel
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Figure 36. VKT Per Capita, by Annual Household Income

behavior, the outcome could be inequitable. Figure 36 shows the VKT per capita for several

income groups. As expected, VKT is significantly higher for higher-income households, but

there is relatively little variation in VKT for particular income groups between the baseline

and scenario simulations.

6.4.1 Congestion

Using the Frank-Wolfe algorithmdescribed above, I loaded vehicle flows onto the South-

ern California road network. Baseline levels of congestion forecast by the traffic assignment

are shown in Figure 37. As expected, there is heavy traffic congestion the LosAngeles area, es-

pecially on the freeway network around downtown Los Angeles (left of center in the figure),

with travel times on many freeways exceeding free-flow travel times by more than 50%.
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Figure 37. AM Peak Congestion, Baseline, Core of the SCAG Region

Congestion levels do not change much under the low operating cost land use scenario.

To make results comparable, the travel models were both fit with populations scaled to be

roughly the same size, as was done in the sorting model, so the only variable that changes be-

tween the two scenarios is the geographic distribution of residents, not the total population

of the region.

Figure 38 shows overlaid histograms of congestion levels for street segments in Los An-

geles, under the baseline and low operating cost scenarios. The histograms are remarkably

close, almost identical, with a very small amount of road transitioning into the uncongested

category. These slight changes in congestion mean that per-capita delay during one hour of
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Figure 38. Kilometers of Roadway by Level of Congestion

the peak period decreases from 2.05 minutes to 1.97 minutes.23 These small changes could

be attributable to error in the model, or they could be consistent with development moving

people away from the most congested areas.

Computing total time spent in congestion is misleading, however, since it implicitly as-

sumes that free-flow traffic speeds are both achievable anddesirable—neither ofwhich is true

in most urban areas (Downs 2004), and additionally masks spatial heterogeneity in changes

in congestion. Figure 39 shows the change from the AMpeak road segment congested travel
23These numbers seem very small compared to traffic congestion reports that one sees in the news. The

most famous of these is the Texas Transportation Institute’s Urban Mobility Report, which estimates that
the average auto commuter in the Los Angeles-Long Beach-Anaheim metropolitan area spends 119 hours in
congestion per year, and 70 hours in the Riverside-San Bernardino area. The estimate here is the total delay
in a single peak hour on a single simulated weekday, divided by the total population of the region. Assuming
250 weekdays per year with 6 congested hours each, this equates to 51 annual hours of delay per capita, not
accounting for weekend and off-peak congestion. Approximately 77% of residents of the Los Angeles-Long
BeachCombined StatisticalAreawere in the labor force, and 86%ofworkers commutedby car, in the 2019ACS
(US Census Bureau 2021). Dividing 51 hours by (0.77 × 0.86) yields an estimate of 77 annual hours of delay
per auto commuter, in the same order ofmagnitude as the TTI estimates, without accounting for off-peak and
weekend congestion.
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time in the baseline to the congested travel time in the low operating cost scenario. There are

some increased travel times on the west side of Los Angeles and in Orange County, where

much of the development from the scenario is occurring. The east side of Los Angeles and

the Inland Empire further east show decreased travel times, not unexpected because pop-

ulation has been redistributed further west. However, this decreased congestion is found

primarily on freeway entrance ramps. This could be a result of fewer residents accessing the

freeway in these neighborhoods, since the scenario redistributes population west (recall that

the total population is held constant, so growth in one part of the region implies fewer resi-

dents in other parts). Delay on freeway entrance ramps is estimated by a separate equation

in the SCAG roadway congestion cost estimation methodology (Southern California Asso-

ciation of Governments 2012), which could also explain why these links are more sensitive

to traffic flows.

6.5 Conclusion

These results suggest that a blanket upzoning across Southern California will not, in the

aggregate, lead to large scale shifts in transport outcomes. While this may be disappointing

to some advocates who hope to use zoning to influence transport outcomes, it should give

hope to those who favor increased housing construction to improve housing affordability.

These results suggest that such increased construction will not dramatically worsen regional

transport outcomes.

These results are only applicable for a blanket upzoning, not a more targeted upzoning

aimed to improve transport and environmental outcomes. I only applied the travel demand

model to this blanket redevelopment scenario, rather than more of the scenarios presented

earlier in this dissertation, due to a lack of funding for computation (each run of the activity-
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Figure 39. Change in Segment Travel Time, Low Operating Cost Scenario vs. Baseline,
AM Peak

based travel model costs about $55 for computation, and each scenario generally requires

multiple runs to debug issues with input data). The scenario I ran it for demonstrates the

most aggressive levels of development, but the new housing is not in places that have sys-

tematically higher access to the region’s opportunities than the existing housing stock. It is

possible that running the model for one of the other scenarios, particularly one of the ones

that targets upzoning to areas near transit, would produce different outcomes; this is left for

future research.

While the model reproduces baseline travel in the region fairly well, future work could

calibrate the model more closely to observed travel patterns in Southern California. In par-

ticular, the model significantly overestimates the use of for-hire vehicles. Additionally, the
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outputs from the congested network assignment have not been validated against observed

vehicle counts and travel times, largely due to a lack of data. Calibrating this model could

lead to more accurate results regarding the congestion effects of land use changes.
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Chapter 7

DISCUSSION, POLICY IMPLICATIONS, AND CONCLUSION

This dissertation has developed a system of microsimulation models to evaluate the ef-

fects of a significant change to housing policy on transport outcomes. From a methodolog-

ical standpoint, this dissertation has made several key contributions. First, my prototype

building approach to construction simulation allows additional detail in the forecasts of

future development, especially on small parcels. Data are readily available from building-

industry data suppliers to enable this approach to be replicated across the country. Secondly,

explicitly accounting for the probability that a property will be sold, and that it will be rede-

veloped given that it is sold, leads to more realistic estimates of construction than evaluating

profitability without accounting for the possibility that a profitable project might not be de-

veloped. Thirdly, the use of equilibrium sorting model borrowed from microeconomics is

relatively unique in this literature. I have extended thismodel to jointlymodel car ownership

and to be robust to exogenous shocks to housing supply.

7.1 Implications for Housing Outcomes

This model suggests that there is not sufficient market potential to meet Southern Cali-

fornia’s housing shortfall purely by converting existing single family homes intomultifamily

homes, even under the most optimistic scenario. However, converting single family homes

to small multifamily homes is only one method of housing provision, and indeed most new

multifamily construction in Southern California is in much larger developments. There is

also significant potential for accessory dwelling units to contribute to housing supply, espe-
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cially with new streamlined permitting processes and manufactured units provided by one-

stop firms (e.g. Abodu). Combined with other options, easing single-family zoning will

positively contribute to solving housing supply shortages.

The model forecasts that development will largely occur in relatively wealthy areas, eas-

ing some concerns about gentrification. That said, there could also be short-term negative

effects, since the homesmost likely to be redeveloped in a particular neighborhood are likely

the least valuable ones—a detail too nuanced to be captured in the data used for this model.

The people moving into the new units come largely from high-income households, sug-

gesting that market development cannot directly meet the needs of lower-income house-

holds now (though, through housing filtering, it may in a decade or two). Some have ar-

gued for an expanded low-income housing tax credit to increase production of homes at the

low-income end of the market (Phillips 2020). Furthermore, units that become financially

feasible due to these subsidies would likely not displace units that would be built due to

market forces, as they occupy different market segments and do not directly compete.

The number of units themodel forecasts will be produced varies by two orders ofmagni-

tude given different plausible assumptions for key variables. This uncertainty in levels of de-

velopment is not surprising given the volatile and cyclical nature of the housing market, but

it stymies policy analysis. The SCAG region needs to plan for 1.3 million new housing units

to meet its Regional Housing Needs Assessment obligations (McCauley 2019), and recently

the California Department of Housing and Community Development has taken more in-

terest in ensuring that the units regions plan for are actually feasible (Monkkonen, Carlton,

and Macfarlane 2020). However, given the volatility of the development climate, planning

for a particular number ofmarket-feasible units is extremely difficult. While interviewing de-

velopers to better understand their decision variables could reduce the uncertainty, I suspect

much uncertainty is related to the uncertain nature of the underlying housing market.
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Due to the cyclical nature of housing supply, Phillips (2020) argues that goverment

should build housing and/or fund housing construction when the economy is poor. It is

less expensive to build at these times, because labor and material costs are lower. Such a pol-

icy would also spread the peaks of housing, reducing the volatility in themarket andmaking

housing planning more straightforward.

While market feasibility analysis is increasingly used in housing policy evaluation, it is

much less common to evaluate the probability of redevelopment given market feasibility.

This dissertation demonstrates that incorporating this effect is crucial, as estimated levels of

development drop significantly once this effect is accounted for. While the approach used

herein to account for the probability that a developer buys a property is crude, it is preferable

to implicitly assuming that the probability is 1. Including this effect can drastically change

policy outcomes, and it should not be overlooked.

7.2 Implications for Transport Outcomes

By and large, across several scenarios, I have found minimal influence of this change to

housing policy on travel behavior outcomes. There are several possible explanations for this

outcome. First, it could be that such changes to housing policy simply do not have large

transport effects, at least when implemented at the scale of the entire Los Angeles mega-

lopolis. This certainly seems possible, particularly since the Los Angeles region is relatively

car-dependent even in central areas. It could simply be that constructing buildings in places

where themarket demands them simply does not change how residents choose to get around.

It is also possible that the magnitude of changes I simulate are simply not large enough

to show an effect. The central “current appreciation” scenario only results in approximately

one additional year’s worth of additional construction, and only a small fraction of the total
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units in Southern California. This theory is lent credence by the fact that there was much

more between-scenario variation in vehicle ownership among residents of new buildings

than among the population overall—although this could also result from self-selection of

low-vehicle households into urban areas in the more heavily urban scenario. That said, the

low operating cost scenario results in a forecasted 644,000 new units across the Los Angeles

area, which is a very significant change, and this scenario too does not affect aggregate travel

behavior (either vehicle ownership, mode choice, or vehicle kilometers traveled) appreciably.

That such a large scenario does not cause a change in the the forecasted outcome suggests

that it is more likely that travel behavior is largely not affected by blanket upzonings, rather

than that the scenarios are insufficiently ambitious.

Finally, it could be that my models of vehicle ownership and travel demand are insuffi-

ciently sensitive to effects of the built environment. This seems unlikely, as the sortingmodel

includes a fairly complete set of covariates, and ActivitySim/Travel Model 1 is an industry-

standard model designed to be sensitive to important characteristics like the built environ-

ment to produce useful forecasts. That said, the model assumes that no land-use changes

occur other than new housing. In reality, if more housing is constructed, stores and offices

are likely to follow. This model only evaluates the effects of people moving to more accessi-

ble locations, not of people locations becoming more accessible due to commercial develop-

ment.

That the changes I simulate did not result in changed transport outcomes (positive or

negative) does not necessarily imply that no zoning changes would, only that the broad-

brush zoning changes I explored likely will not. Zoning changes that are targeted to specific

locations around transit may be more successful at changing travel behavior. While I exam-

ined several such scenarios, the development they induced was rather modest at a regional

scale.
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A specific zoning change that I did not investigate due to lack of data is parking. All of

my prototype buildings assumed at least parking space per apartment, but having or lacking

parking has a strong effect on vehicle ownership, even in randomized trials (Millard-Ball et

al. 2020). If zoning codes were to remove parkingminimums, perhaps even implement park-

ing maximums, and/or require unbundling of parking from apartment rents, travel behav-

ior changes well beyond what I find here could transpire. A number of cities have already re-

duced or eliminated parking requirements, including Buffalo,Hartford, San Francisco (Shill

2020, 69), Los Angeles (Manville 2013),Minneapolis (Magrino 2018), and SanDiego (NBC7

San Diego 2019). Lehe (2018) and Shoup (2011) argue that minimum parking requirements

make housing more expensive and reduce the number of units built. Thigpen (2018) found

that residential parking was underutilized and housing density could be increased on the

same amount of land. In addition to increasing housing costs, parking requirements repre-

sent a subsidy to driving (Shill 2020).

7.3 Future Research

This dissertation is based on microsimulation models. Since significant zoning changes

have taken place in a number of locations in the last few years, there will soon be an oppor-

tunity to supplement these results with survey-based research. Cities and regions which are

relaxing their zoning codes should track the structures that are built under the new rules,

to understand their effects. Ideally, residents of the new buildings could be surveyed about

their travel behavior, perhaps as an oversample in a regional household travel survey. This

would allow researchers to directly compare the travel behavior of residents of the newbuild-

ings to the region as a whole. Self-selection of residents into these buildings will still be an

issue, so statistical models will have to include carefully-selected controls to try to reduce this
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issue. In particular, including attitudinal variables in the survey may help reduce bias due to

self-selection (Cao, Mokhtarian, and Handy 2009).

The zoning changes examined in this research were limited; I only evaluated a complete

elimination of single-family zoning, and elimination of single-family zoning in areas close to

transit. Future research should consider more nuanced scenarios. For instance, one scenario

that may ease gentrification concerns is to limit development to high-income and/or high-

resource areas; since construction is concentrated in these areas anyhow, such a policy may

notmaterially reduce redevelopmentpotential. Reducingparking requirements could result

in significant transport changes, another policy option that should be considered in future

research. Additionally, I did not propagate all of the zoning and development scenarios I

developed through to the final travel demandmodel, due to cost and time constraints; future

research should bring all scenarios through to the travel demand model.

If the geography of residential development changes significantly, commercial develop-

ment is likely to change as well. As an area densifies, it is able to support more businesses,

meaning residents do not have to travel as far to access the services they require. This could

have positive effects on travel behavior that are notmodeled herein. Future simulationwork

should investigate how commercial geography might change in response to a change in resi-

dential zoning, to better understand the full effects of a zoning change.

This dissertation focused on a single type of redevelopment—the replacement of individ-

ual single-family homes with larger multifamily homes. However, most multifamily const-

ruction in recent years has occurred on a much larger scale, and zoning changes may enable

larger multifamily construction in existing single-family areas if there are larger parcels, or

if developers are able to assemble several parcels. Future research could investigate the po-

tential for larger developments. In addition, even on single lots, evaluating more prototype

buildings would be a valuable addition to this dissertation.
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This dissertation consists of a string of models—of development, residential location,

and travel behavior—strung together. Each model has associated uncertainty. While I have

propagated some uncertainty through the model system through the use of multiple scenar-

ios, additional uncertainty is not propagated. In future work it would be valuable to better

understand the uncertainty in the final results by accounting for the uncertainty in earlier

models. The most promising method is to use a combination of scenario modeling and

bootstrapping, although this requires many model runs and would require significant and

expensive computer time.

7.4 Recommendations for Policy

The major policy implication of this project is that the transport impacts of blanket up-

zoning are relatively small. Transport concerns are often a key objection to development and

to changes in zoning policy. This research suggests that under a blanket upzoning, these con-

cerns may be unfounded.

This research does not, however, undermine policies that attempt to change transport

outcomes through land-use policy (e.g., California’s SB 375Barbour andDeakin 2012). These

policies do not propose blanket upzoning, but rather targeted upzoning to focus develop-

ment in more-accessible places. More research is needed to understand the effects of these

policies.
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APPENDIX A

MAPS OF SENSITIVITY TESTS FOR PROFITABILITY MODEL
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These maps show where it is profitable to redevelop single-family homes in all scenarios
tested in Chapter 2.
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Figure 40. Geographic Distribution of Growth for Each Scenario
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Figure 41. Geographic Distribution of Growth for Each Scenario
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APPENDIX B

COMPUTATIONAL APPROACHES USED IN SORTING MODEL
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The computational requirements of estimating and equilibrating the sorting model de-
scribed in Chapter 4 are significant, and a number of techniques were needed in order to
successfully run the model. Those techniques are detailed in the sections that follow. For
context, themodel has 260,933 households, 974 housing types, 4 levels of vehicle ownership,
and 105 estimated parameters exclusive of alternative specific constants. Both estimation and
simulation take place on an Amazon Web Services r5.4xlarge instance with 16 cores, 128
GBofRAM, and a 300GBsolid-state disk, runningAmazonLinux, or on Intel x86orAMD
Epyc nodes with 100GB of allocated RAM in the ASU high-performance compute cluster

B.1 Computing Utility Piecewise

The utility of all alternatives for all households is needed to compute the full alternative
specific constants to guarantee that the observed prices clear the existingmarket, and inmar-
ket clearing during sorting. Conceptually, this is simply the product of the matrix of all vari-
ables for all household-alternative pairs multiplied by the vector of coefficients. However,
with 105 variables (excluding ASCs), 974 housing types, 4 levels of vehicle ownership, and
260,933 households, thematrix of variables contains 105×974×4×260, 933 ≊ 107 billion
floating point numbers. Since each double-precision floating point number requires 8 bytes
of memory, this array would require 795 GB of memory—far more than the 128 GB avail-
able on the machine used to fit the model. However, the final vector of utilities is has only
974 × 4 × 260, 933 elements, and thus requires only 8 GB of memory. Since the utility of
each row is independent, I compute the utility in chunks, allocating intermediate matrices
of 2 GB each, multiplying by coefficients, and then combining the results into a single final
array. With multithreading (see Section B.3), this computation takes about 30 minutes.

B.2 Taking Advantage of the Linear Utility Function

There are several places where derivatives of the utility function need to be numerically
estimated with respect to some variable. Most notably, this is needed when computing the
market-clearing prices in Equation (4.8). It is also needed when computing the Hessian ma-
trix to produce standard errors for the coefficient estimates in Appendix C.When the deriva-
tives are used in sorting, this is especially computationally intensive, as derivatives need to
be calculated based on all alternatives, rather than the sampled alternatives used in model
fitting—indeed, the vast majority of the compute time to findmarket-clearing prices is used
in finding derivatives. Tomake this process faster, rather than calculating the full utility func-
tionwith one parameter slightlymodified, I first calculate the full utility function. Then, for
each parameter or housing price I need to calculate the derivative with respect to, I add only
the difference in the utility function implied by that change, rather than recalculating the
full utility function. Similarly, in some cases, I calculate the full utility function except for a

153



particular variable, and then add different versions of that variable to calculate the derivative.
This drastically speeds the process of computing derivatives.

B.3 Multithreading

To speed computation,multithreading is used in several locations throughout themodel
fitting process. Piecewise utility computation and Hessian computation are both imple-
mented using as many threads as the machine has available CPUs, while derivative compu-
tations in the sorting phase use 2 threads to avoid overloading available memory. These
are implemented using Python’s threading library. The global interpreter lock in Python
prevents Python code from executing inmore than one thread simultaneously, usually mak-
ing multithreading impractical in Python programs. However, most of the computation
in these processes is done with numpy, which is an extension to Python written in C which
releases this global interpreter lock (Python Wiki 2020), allowing the heavy compuations
to happen in parallel, even though the lightweight Python code that starts them and stores
their results does not.

Multithreading is also heavily used in traffic assignment; Julia does not have a global
interpreter lock, making implementation simpler.

B.4 Memory-Mapped Arrays

Memory-mapping allows a file on disk to be addressed as if it were in memory, and the
operating system kernel handles moving pages of the file in and out of memory as needed,
and caches the file in memory whenever available memory allows. I memory-map several
of the large but infrequently-used arrays, such as indices into the vector of utilities. These
indices are generally accessed sequentially, so once an access starts the CPU is able to easily
predict which parts of the file will be read next and have that part of the file ready in mem-
ory when the program needs it, making accessing these memory-mapped files stored on disk
almost as fast as if they were stored directly in memory, but without the memory hit.

Memory-mapped arrays can also be opened in copy-on-write mode, in which modifica-
tions to the array are stored in memory but not persisted back to disk. This is used when
calculating derivatives of demandwith respect to price. A small part of the utility arraymust
be changed in each thread that is computing derivatives. To prevent each thread fromhaving
to have its own copy of this large array tomodify, I write the array to a file and thenmemory-
map it in copy-on-write mode into each thread, so the threads can modify their own private
copies of the array, while still sharing the unmodified portions to save memory.
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APPENDIX C

SORTING MODEL COEFFICIENTS
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Table 17. Equilibrium Sorting Model Results
First-stage tenure choice model†

Binary logit for renting vs. owning
Coefficient Std. Err. p-value

University-educated in HH -0.75*** 0.08 0.00
Number of workers 0.29*** 0.01 0.00
Child in HH -0.11 0.09 0.22
Senior in HH -0.68*** 0.07 0.00
Household size 0.25*** 0.01 0.00
Income $50,000–$100,000 -2.25*** 0.08 0.00
Income ≥ $100,000 -3.32*** 0.10 0.00
Income < $50,000 × immigrant in HH -0.14*** 0.03 0.00
Income $50,000–$100,000 × immigrant in HH -0.25*** 0.03 0.00
Income ≥ $100,000 × immigrant in HH -0.36*** 0.03 0.00

First-stage residential choice model†
Coefficient Std. Err. p-value

Budget (ln(income - housing cost)) 0.46*** 0.01 0.00
Renters

College-educated individual in household ×
Median fifth-grade math proficiency 3.42*** 0.09 0.00
PUMA access 0.15*** 0.02 0.00
Regional access 0.07*** 0.01 0.00
PUMA access > 90th pctile 0.38*** 0.04 0.00
Regional access > 90th pctile -0.02 0.03 0.57
Single-family home -0.06*** 0.02 0.00

Number of workers in household ×
PUMA access 0.08*** 0.01 0.00
Regional access 0.14*** 0.01 0.00
PUMA access > 90th pctile -0.08*** 0.02 0.00
Regional access > 90th pctile -0.0 0.02 0.78

Immigrant in household ×
Single-family home -0.29*** 0.02 0.00
PUMA access 0.26*** 0.01 0.00
Regional access 0.51*** 0.01 0.00
PUMA access > 90th pctile -0.31*** 0.04 0.00
Regional access > 90th pctile -0.43*** 0.03 0.00

Child in household ×
Single-family home 0.02 0.02 0.32
PUMA access -0.18*** 0.02 0.00
Regional access -0.06*** 0.01 0.00
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Table 17. Equilibrium Sorting Model Results, Continued
Coefficient Std. Err. p-value

PUMA access > 90th pctile -0.13** 0.04 0.00
Regional access > 90th pctile -0.11*** 0.03 0.00

Senior in household ×
Median fifth-grade math proficiency -0.18* 0.07 0.01
Single-family home 0.45*** 0.02 0.00
PUMA access -0.12*** 0.01 0.00
Regional access 0.02 0.01 0.12
PUMA access > 90th pctile -0.06 0.04 0.14
Regional access > 90th pctile -0.11*** 0.03 0.00

Household size ×
Single-family home 0.38*** 0.01 0.00

Income $50,000–$100,000 ×
Median fifth-grade math proficiency 0.91*** 0.09 0.00
Single-family home 0.18*** 0.02 0.00
PUMA access -0.01 0.02 0.44
Regional access 0.07*** 0.01 0.00
PUMA access > 90th pctile 0.1* 0.04 0.02
Regional access > 90th pctile -0.12*** 0.03 0.00

Income ≥ $100,000 ×
Median fifth-grade math proficiency 3.07*** 0.12 0.00
Single-family home 0.63*** 0.02 0.00
PUMA access 0.11*** 0.02 0.00
Regional access 0.08*** 0.02 0.00
PUMA access > 90th pctile 0.19*** 0.06 0.00
Regional access > 90th pctile -0.0 0.04 1.00

Child in household ×
Median fifth-grade math proficiency ×

Income<$50,000×Nocollege-educated in-
dividual in household

-2.43*** 0.10 0.00

Income $50,000–$100,000 × No college-
educated individual in household

-2.11*** 0.12 0.00

Income ≥ $100,000 × No college-educated
individual in household

-1.41*** 0.16 0.00

Income < $50,000 × College-educated indi-
vidual in household

-1.14*** 0.21 0.00

Income $50,000–$100,000 × College-
educated individual in household

-0.71*** 0.15 0.00

Income ≥ $100,000 × College-educated in-
dividual in household

0.55*** 0.13 0.00
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Table 17. Equilibrium Sorting Model Results, Continued
Coefficient Std. Err. p-value

Owners
College-educated individual in household ×

Median fifth-grade math proficiency 2.99*** 0.08 0.00
PUMA access 0.17*** 0.02 0.00
Regional access 0.09*** 0.01 0.00
PUMA access > 90th pctile 0.19*** 0.04 0.00
Regional access > 90th pctile -0.09** 0.03 0.00
Single-family home -0.29*** 0.02 0.00

Number of workers in household ×
PUMA access 0.05*** 0.01 0.00
Regional access 0.11*** 0.01 0.00
PUMA access > 90th pctile -0.1*** 0.02 0.00
Regional access > 90th pctile 0.07*** 0.01 0.00

Immigrant in household ×
Single-family home -0.3*** 0.02 0.00
PUMA access 0.24*** 0.02 0.00
Regional access 0.43*** 0.01 0.00
PUMA access > 90th pctile -0.42*** 0.04 0.00
Regional access > 90th pctile -0.5*** 0.03 0.00

Child in household ×
Single-family home -0.03 0.04 0.49
PUMA access -0.03 0.02 0.08
Regional access -0.06*** 0.01 0.00
PUMA access > 90th pctile -0.08 0.05 0.07
Regional access > 90th pctile 0.13*** 0.03 0.00

Senior in household ×
Median fifth-grade math proficiency 0.24*** 0.06 0.00
Single-family home 0.57*** 0.02 0.00
PUMA access -0.0 0.02 0.85
Regional access 0.11*** 0.01 0.00
PUMA access > 90th pctile -0.07 0.04 0.06
Regional access > 90th pctile -0.1*** 0.03 0.00

Household size ×
Single-family home 0.6*** 0.01 0.00

Income $50,000–$100,000 ×
Median fifth-grade math proficiency -1.33*** 0.09 0.00
Single-family home -0.11*** 0.03 0.00
PUMA access -0.01 0.02 0.70
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Table 17. Equilibrium Sorting Model Results, Continued
Coefficient Std. Err. p-value

Regional access -0.06*** 0.01 0.00
PUMA access > 90th pctile -0.12* 0.05 0.02
Regional access > 90th pctile 0.02 0.04 0.55

Income ≥ $100,000 ×
Median fifth-grade math proficiency 0.38*** 0.09 0.00
Single-family home 0.23*** 0.03 0.00
PUMA access 0.06* 0.02 0.01
Regional access -0.04** 0.01 0.00
PUMA access > 90th pctile 0.17** 0.06 0.00
Regional access > 90th pctile -0.07 0.04 0.10

Child in household ×
Median fifth-grade math proficiency ×

Income<$50,000×Nocollege-educated in-
dividual in household

-3.58*** 0.13 0.00

Income $50,000–$100,000 × No college-
educated individual in household

-2.61*** 0.12 0.00

Income ≥ $100,000 × No college-educated
individual in household

-1.56*** 0.15 0.00

Income < $50,000 × College-educated indi-
vidual in household

-1.49*** 0.22 0.00

Income $50,000–$100,000 × College-
educated individual in household

-0.81*** 0.15 0.00

Income ≥ $100,000 × College-educated in-
dividual in household

1.08*** 0.11 0.00

First-stage vehicle ownership model†

One car
(Std. Err.)

Two cars
(Std. Err.)

Three
or more

cars
(Std. Err.)

ASC‡ 2.25 -0.06 -2.91

Child in household 0.96***
(0.03)

0.14***
(0.03)

-0.9***
(0.03)

PUMA access -0.22***
(0.01)

-0.43***
(0.01)

-0.68***
(0.02)

Regional access -0.1***
(0.01)

-0.24***
(0.01)

-0.34***
(0.01)

PUMA access > 90th pctile -0.01
(0.03)

-0.09*
(0.04)

-0.13**
(0.04)
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Table 17. Equilibrium Sorting Model Results, Continued
Coefficient Std. Err. p-value

Regional access > 90th pctile -0.19***
(0.02)

-0.38***
(0.03)

-0.49***
(0.03)

Income ≥ $100,000 0.38***
(0.03)

1.69***
(0.03)

2.45***
(0.03)

Income $50,000–$100,000 0.63***
(0.02)

1.26***
(0.02)

1.62***
(0.03)

Household size -0.46***
(0.01)

0.3***
(0.01)

0.8***
(0.01)

College-educated individual in household 0.59***
(0.02)

0.81***
(0.02)

0.67***
(0.02)

Number of workers in household 0.07***
(0.01)

0.4***
(0.01)

0.83***
(0.02)

First-stage model diagnostics
McFadden’s Pseudo-R2 0.14
Number of households 262,924

Second-stage housing choice model (OLS)
Coefficient Std. Err.§ p-value

Intercept (ν) 0.75*** 0.06 0.0
Rent 0.57*** 0.09 0.0
Rent ×

Single-family home -1.27*** 0.02 0.0
PUMA access 0.06*** 0.02 0.0
Regional access -0.21*** 0.01 0.0
PUMA access > 90th pctile 0.15** 0.05 0.0
Regional access > 90th pctile 0.48*** 0.03 0.0
Median fifth-grade math proficiency -1.9*** 0.09 0.0

Own ×
Single-family home -1.58*** 0.02 0.0
PUMA access 0.09*** 0.02 0.0
Regional access -0.11*** 0.01 0.0
PUMA access > 90th pctile 0.27*** 0.05 0.0
Regional access > 90th pctile 0.46*** 0.03 0.0
Median fifth-grade math proficiency -1.71*** 0.09 0.0

R2 0.94
Adj. R2 0.94
Sample size 974

.: p < 0.1; *: p < 0.05; **: p < 0.01; ***: p < 0.001
† Jointly estimated.
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Table 17. Equilibrium Sorting Model Results, Continued
Coefficient Std. Err. p-value

‡ ASCs are found through a contraction mapping process, standard errors are not estimated.
§ These standard errors do not account for any error in the dependent variable from

the first-stage estimation.
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APPENDIX D

OPEN-SOURCE SOFTWARE DEVELOPED FOR THIS DISSERTATION
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In order to support my work on this project, I developed several pieces of software that
may be generally useful to the research community. I have released them as open-source
under the Apache license to promote their re-use.

D.1 eqsormo

https://github.com/mattwigway/eqsormo
eqsormo is a Python package for fitting equilibrium sorting models. It currently sup-

ports theTra-style sortingmodels used inmydissertation. Itsmodular designmeans it could
be adapted to support other types of sorting models.

D.2 TransitRouter.jl

https://github.com/TransitRouter.jl
TransitRouter.jl is a Julia package to find shortest paths in public transport net-

works, using the RAPTOR algorithm (Delling, Pajor, and Werneck 2015) and machine-
readable schedule data in GTFS format. It also performs routing on the street network for
access to transit through an integration with the OSRM route-finding software (Luxen and
Vetter 2011). This package was used to calculate transit skims for the activity-based model

D.3 OSMPBF.jl

https://github.com/mattwigway/OSMPBF.jl
OSMPBF.jl is a Julia package for reading OpenStreetMap from the binary Open-

StreetMap Protocol Buffers format, including files that are larger than available RAM. This
format can be processed far more efficiently than the original XML-based representation
of OpenStreetMap data, but no package for reading these files was available for Julia. This
package was used to build the road network for the Frank-Wolfe traffic assignment process.

D.4 sqmake

https://github.com/mattwigway/sqmake
sqmake is GNU Make-like tool for managing data analysis that takes place in SQL

databases. Much of the construction model in this dissertation is implemented as a series
of long-runing queries in PostGIS database. sqmake allows me to write all of these scripts,
and then simply type sqm <task> to run <task> as well as all the other tasks that must be
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run in preparation for that task. sqmake figures out which tasks have already been run and
do not need to be re-run based on the state of the database.
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