
Version control with Git and GitHub

Matthew Wigginton Conway

School of Geographical Sciences and Urban Planning

Arizona State University

May 1, 2020



Slide download

https://files.indicatrix.org/git.pdf

https://files.indicatrix.org/git.pdf


What is version control?

I Track changes to your code

I Know when and whomade changes to code

I Revert to old versions of your code

I Archive specific versions of your code (e.g. after publication)

I git is the most popular version control system, and it’s free



git vs. GitHub

git
I Software that runs on your computer

I Used to manage your code locally

I Runs from the command line

GitHub

I Website for hosting software stored

in git
I Allows collaboration with other on

git-based projects

I Allows public or private code storage



git Concepts

I Repository: storage for code for a single project

I Commit: Set of changes to the code

I Branch: Version of the code you can try something in before finalizing it

I Tag: Pointer to a specific version of your code (e.g. for publication)

I Working tree: The copy of your code on your system, which you may have

modified since the last commit



What should I put in version control?

I Yes
I Code
I Text-based documentation (TeX, Markdown, etc.)

I Maybe
I Binary documents (Word, Excel, etc.)

I No
I Large files (larger than a few MB)
I Data files (shouldn’t be changing often)



Collaboration

I Don’t share your git repository with others via Dropbox, etc.
I Repository can become corrupted if modified simultaneously

I Instead, use a service like GitHub



Live demo

Download and unzip:
https://files.indicatrix.org/git-demo.zip

https://files.indicatrix.org/git-demo.zip


Open a terminal

I Mac: Open Terminal application, type cd , drag folder into terminal, press

enter

I Windows: Right-click in folder, choose Git Bash Here

I Linux: Open a terminal, cd ~/where/you/unzipped/folder



git Setup

I git config --global user.name "Your Name"

I git config --global user.email "Your Email"
I If you push to a public repository on GitHub, your email will be public
I If that concerns you, skip setting email for now
I Later, follow: How to keep your email private on GitHub

https://help.github.com/en/github/setting-up-and-managing-your-github-user-account/setting-your-commit-email-address


Creating a new git repository

I git init

I git add README.txt demo.R
I Can use git add more than once

I git commit -m "Commit message"
I Quotes are important!



Make some changes to the files,

create new files, etc.



Seeing what’s changed since the last commit

I git status
On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: README.txt
deleted: demo.R

Untracked files:
(use "git add <file>..." to include in what will be committed)

demo2.R

no changes added to commit (use "git add" and/or "git commit -a")

Modified

Deleted

New



Seeing what’s changed since the last commit

I git status
On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: README.txt
deleted: demo.R

Untracked files:
(use "git add <file>..." to include in what will be committed)

demo2.R

no changes added to commit (use "git add" and/or "git commit -a")

Modified

Deleted

New



Seeing what’s changed since the last commit

I git status
On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: README.txt
deleted: demo.R

Untracked files:
(use "git add <file>..." to include in what will be committed)

demo2.R

no changes added to commit (use "git add" and/or "git commit -a")

Modified

Deleted

New



Seeing what’s changed since the last commit

I git status
On branch master
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: README.txt
deleted: demo.R

Untracked files:
(use "git add <file>..." to include in what will be committed)

demo2.R

no changes added to commit (use "git add" and/or "git commit -a")

Modified

Deleted

New



Committing your changes

I git add for modified or new files

I git rm for deleted files

I git commit -m "commit message" to commit



Getting rid of your changes before you commit

I git restore filename for a single file

I git checkout filename in older versions of git

I NO UNDO

I git stash for your entire working tree (except new files)

I git stash pop to undo



Getting rid of your changes before you commit

I git restore filename for a single file

I git checkout filename in older versions of git

I NO UNDO

I git stash for your entire working tree (except new files)

I git stash pop to undo



Creating a branch

I git switch -c branch-name
I git checkout -b branch-name on older versions of git



Working on a branch

I Change some files

I Commit them



Switching back to your main branch

I Main branch is master
I To get back to it: git switch master

I git checkout master on old versions

I Commit or restore everything before switching branches
I Any changes not committed or restored will be retained when switching branches



Merging changes from a branch into master

I git merge branch-name
I If files have changed in both branches, git will try to combine the changes

I Always check that results make sense after a merge

I If the merge process doesn’t work: how to resolve a merge conflict

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/resolving-a-merge-conflict-using-the-command-line


Tagging a commit

I git tag tag-name
I Make sure you have no uncommitted changes



Getting back to an old tag

I git tag to list tags

I git checkout <tag-name> to restore that tag

I Check for changes using git status beforehand

I This does not change the master branch



Getting back to an old commit

I git log
commit 64660da5ee23476e82b9c199bee6efdcb91d7969
Author: Matthew Wigginton Conway <matt@indicatrix.org>
Date: Sat Dec 28 13:43:13 2019 -0500

adjust convergence criteria to be less stringent.

commit 169a33d0860d4a7914663f01794b4af0b6e6a82d
Author: Matthew Wigginton Conway <matt@indicatrix.org>
Date: Wed Nov 27 15:21:52 2019 -0800

don't import bayer by default, remove dep on linearmodels.

Commit hash

I To go back to commit 169a33d: git checkout 169a33d
I This does not change the master branch



Getting back to an old commit

I git log
commit 64660da5ee23476e82b9c199bee6efdcb91d7969
Author: Matthew Wigginton Conway <matt@indicatrix.org>
Date: Sat Dec 28 13:43:13 2019 -0500

adjust convergence criteria to be less stringent.

commit 169a33d0860d4a7914663f01794b4af0b6e6a82d
Author: Matthew Wigginton Conway <matt@indicatrix.org>
Date: Wed Nov 27 15:21:52 2019 -0800

don't import bayer by default, remove dep on linearmodels.

Commit hash

I To go back to commit 169a33d: git checkout 169a33d
I This does not change the master branch



Getting back to an old commit

I git log
commit 64660da5ee23476e82b9c199bee6efdcb91d7969
Author: Matthew Wigginton Conway <matt@indicatrix.org>
Date: Sat Dec 28 13:43:13 2019 -0500

adjust convergence criteria to be less stringent.

commit 169a33d0860d4a7914663f01794b4af0b6e6a82d
Author: Matthew Wigginton Conway <matt@indicatrix.org>
Date: Wed Nov 27 15:21:52 2019 -0800

don't import bayer by default, remove dep on linearmodels.

Commit hash

I To go back to commit 169a33d: git checkout 169a33d
I This does not change the master branch



Doing more work based on an old commit

I Create new branch based on old commit or tag

I First, get to old tag or commit with git checkout

I Then, git switch -c new-branch-name
I git checkout -b new-branch-name on old versions

I This creates a new branch that you can work on and commit to based on old

version

I git switch master to get back to the most recent code

I git checkout master on old versions

I Merging this branch could be messy



Getting a single file from an old commit or tag

I git restore --source=<commit hash or tag> filename
I git checkout <commit hash or tag> -- filename on old versions

I git add filename then git commit to commit old version of file



What about files I don’t want to commit?

I Create a file .gitignore in your repository
I List any files or file patterns you don’t want to commit

I e.g.

*.csv
data
api_keys.yaml

All CSV files
Directory

Single file



Pushing to GitHub

I You don’t have to use use GitHub to use git
I Repositories can be public or private

I In public repositories, all files and their history can be seen by anyone
I Just deleting sensitive data before making a repository public doesn’t cut it...



Creating a repository



Creating a repository



Creating a repository



Working with GitHub

I After making commits on your computer: git push
I To push a new branch: git push -u origin branchname

I After someone else has made commits: git pull
I After someone else has pushed a branch:

I git fetch
I git switch <branch name>



GitHub: using pull requests



GitHub: using pull requests



GitHub: using pull requests

Live demo: https://github.com/mattwigway/git-demo/pull/1

https://github.com/mattwigway/git-demo/pull/1


Best practices for collaboration using GitHub

I Work on your own branch

I When you’re ready to share your code with the team, make a pull request

I Have others review the pull request before merging



Questions/Contact

mwconway@asu.edu

@mattwigway

Other resources:

I git book: https://git-scm.com/book/
I GitHub help: https://help.github.com

© 2020 Matthew Wigginton Conway. Licensed under the Creative Commons Attribution-ShareAlike License, version 4.0.

https://git-scm.com/book/
https://help.github.com

