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Bhagat-Conway

ABSTRACT1

Evaluating changes to transit service using accessibility metrics is increasingly common.2

However, these metrics are almost always used to evaluate changes to the transit service itself.3

Almost every transit user is also a pedestrian at some point when accessing or egressing from a4

stop. In this article, I apply an automated algorithm to identify locations in the pedestrian network5

where adding an additional link would improve transit accessibility. I then evaluate these locations6

in terms of their impact on accessibility to jobs via transit, combining both the pedestrian network7

and the transit service to evaluate the real-world impact of these changes.8

Improving accessibility via transit through street network improvements is an attractive9

proposition, because unlike service improvements street network improvements have minimal on-10

going costs. Furthermore, many pedestrian network improvements (e.g. crosswalks or sidewalks)11

are relatively low cost compared to capital investment in transit service.12

Keywords: last-mile, transit, pedestrian environment13
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INTRODUCTION1

Accessibility metrics are increasingly used in transportation planning (1, 2), and particu-2

larly in public transit planning (3–9). These metrics measure the potential access to opportunities3

afforded by the transportation system—in their simplest form, this might be something like “a per-4

son at this location can reach 200,000 job opportunities within 60 minutes on public transportation.”5

Most often, accessibility metrics are used in transit planning to evaluate the impacts of6

changes to transit service. However, the vast majority of transit users walk to transit (e.g., 10),7

meaning the pedestrian environment around stops is also very important to understanding transit8

access. Modern accessibility analysis tools model the walk to transit as well as the ride time, often9

using OpenStreetMap data, so the pedestrian environment is not completely discounted. However,10

it is rare to model transit access impacts of changes to the pedestrian network.11

Much post-war development in the United States is characterized by disconnected street12

networks, cul-de-sacs, and sparse pedestrian infrastructure. This type of street network design can13

significantly reduce the catchment area of bus stops. For instance, Figure 1 shows a 20-minute14

walk from two bus stops in Raleigh, North Carolina, USA. The dark line indicates the theoretical15

maximum catchment if one could walk in a straight line in any direction. The shaded area shows16

the actually reachable area. On the left, a stop in downtown Raleigh is shown; since downtown has17

a well-connected, gridded street network, the reachable area approaches the theoretical maximum.18

On the right, a stop in suburban north Raleigh is shown; the reachable area is significantly smaller.19

Figure 1: Catchment areas of two bus stops in Raleigh, North Carolina, USA

Bhagat-Conway, Compiano, and Ivie (11) introduced an algorithm to identify “low-hanging20

fruit” missing links in the pedestrian network. Specifically, this “Missing Links” algorithm identi-21

fies locations on the street network that are close together geographically, but far apart in network22

distance. It then scores those links based on their contribution to accessibility.23

In this article, I apply this algorithm to identify potential links that could improve access to24

public transit stops, and then evaluate the most-highly-ranked links using a traditional accessibility25
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metric generally applied to transit service changes.1

LITERATURE REVIEW2

A prerequisite for using public transit is that transit stops must be readily accessible from3

both the origin and the destination of the trip. Most transit users walk to access transit. Walking4

distances vary, but many transit agencies assume that riders will walk up to 400 m to access transit,5

possibly more for higher-quality transit (12). A recent review article found widely varying typical6

walking distances to transit for different types of service and in different geographic areas (13).7

Even within a single metropolitan area, walking distances vary based on the built-environment8

context as well as rider characteristics (14).9

Considering first- and last-mile barriers in transit accessibility analyses is very important.10

Different methods for calculating catchment areas produce very different results, both in terms of11

the catchment areas identified (15) and in terms of overall acessibility results (16). However, from12

a ridership perspective, Guerra et al. (17) found that different catchment areas did not have strong13

effects on predictive power in a ridership model.14

Lahoorpoor and Levinson (18) studied the impact of changes to the pedestrian environment15

on access to rail transit in the Sydney metropolitan area. They investigated the impacts of adding16

additional entrances and exits to rail stations on access to the local community, and found that catch-17

ment areas and residents/jobs near transit in some areas could be significantly increased through18

additional station access points.19

METHODS AND DATA20

I use data from the Research Triangle region of North Carolina, USA, to identify locations21

where additions to the pedestrian network could increase transit access. I source GTFS data from22

the five major transit operators in the region: GoDurham, GoRaleigh, GoTriangle, GoCary, and23

Chapel Hill Transit.24

I source pedestrian network data from OpenStreetMap. Sidewalk representations in25

OpenStreetMap vary somewhat in both quality and in how they are mapped (separately from the26

road vs. as a tag on the road itself) (19). For this reason, most OpenStreetMap-based routing27

engines take a fairly lenient approach in terms of pedestrian path generation: they allow walking28

on any road where pedestrians are assumed to be legally allowed (i.e. most roads, excepting29

freeways/motorways and those explicitly tagged as not allowing pedestrians).30

Since this work focuses on improvements to the pedestrian network, I want to use a network31

of links where pedestrians are likely to feel comfortable walking, rather than all places they are32

legally allowed to walk. To approximate this network, I filter the OpenStreetMap data to only33

ways that have a highway type of34

• footway,35

• cycleway,36

• pedestrian,37

• track,38

• sidewalk,39

• service,40

• road,41

• steps,42

• path,43
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• crossing, or1

• residential,2

as well as those that are tagged as having sidewalks or are explicitly tagged as allowing3

pedestrians. This leads to a somewhat disconnected network in suburban areas. This disconnected4

network is a better representation of the lived experience of pedestrians in suburban areas of the5

Research Triangle.6

I then apply the algorithm of Bhagat-Conway et al. (11) to this network. This algorithm7

identifies locations on the network that are geographically close together, but far apart or discon-8

nected entirely in network space, and ranks them using an accessibility metric. In this work, I9

identify links that are no more than 100 m long, and avoid a walk of at least 500 m. As Bhagat-10

Conway et al. did, I remove very small “islands” in the OSM network with fewer than 10 vertices,11

as these are more likely to represent data errors than actual disconnected locations.12

This process identifies hundreds of thousands of potential links in the region, though many13

provide effectively the same access. I use the deduplication method described in (11) to reduce this14

to a more manageable amount. I then score these links using an accessibility metric. Tolerance for15

distance to transit is usually assumed to be between 400 m and 1 km; I take the upper end of this16

range and use the an accessibility metric based on stops accessible within 1 km. I weight this by17

the number of vehicles serving the stop, as well as the number of people who the new link serves.18

Specifically, the overall access to transit provided by the network is19

∑
𝑖

∑
𝑠

𝑝𝑖𝑤𝑠𝑓(𝑑𝑖𝑠) (1)

where 𝑖 is an index of all nodes in the graph, 𝑝𝑖 is the population assigned to each node20

(based on the 2020 Census block-level population and the same assignment technique used in (11)),21

𝑤𝑠 is the weight assigned to stop 𝑠, and 𝑑𝑖𝑠 is the network distance from node 𝑖 to stop 𝑠. 𝑓(𝑑𝑖𝑠)22

is the impedance function, which in this case is simply23

𝑓(𝑑𝑖𝑠) = { 1 𝑑𝑖𝑠 < 1 km
0 otherwise

(2)

The weight assigned to a stop is the number of vehicles that serve that stop on a typical24

weekday, so stops that are served more frequently will have a higher impact on overall accessi-25

bility. Similarly, stops that serve a larger number of people will have a greater impact on overall26

accessibility. I rank the identified links based on the impact each link individually has on the ac-27

cessibility in Equation 1.28

The accessibility algorithm requires that all origins and destinations be associated with a29

node, so I insert all stops in each of the GTFS into the graph. If they are near an existing node, I30

assign the stop to that node. If they are within 20 meters of an existing edge, but not near an existing31

node, I insert a node into that nearby edge. Lastly, if they are not near any edges (e.g. stops that are32

on streets without sidewalks), I add two nearly-coincident nodes, and a “phantom” edge between33

them. The algorithm only identifies missing links between edges, so this phantom edge allows the34

algorithm to connect these stops to the network.35

The Research Triangle network is much larger than the Charlotte network used by Bhagat-36

Conway et al. (11), with 470,000 vertices and 580,000 edges (as opposed to 140,000/160,000). In37

initial testing, I found that identifying, deduplicating, and scoring links in this large network had38
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unsatisfactory performance. However, since pedestrian accessibility is only affected by the network1

in the local area, I solve this problem by partitioning the network into 24 sub-networks in a regular2

grid.3

To avoid edge effects, I buffer each grid cell by 1.1 km. Thus, any link within 1.1 km of4

a cell boundary will be more than 1.1 km crow-flies from the edge of anothe sub-network. I only5

retain links where at least one end is in the main part of the grid cell, rather than in the buffer, to6

avoid finding spurious links or scores caused by edge effects. If at least one end of the link is more7

than 1.1 km from the edge of the grid cell, and the links are no more than are 100 m long and based8

on transit stops within 1 km, there is no way a portion of the network more than 1.1 km away could9

affect the link or its score.10

It is important to differentiate access to transit from access via transit. Access to transit11

measures the ability to get to a bus stop, while access via transit measures what destinations you12

can actually get to using the street network and transit system. For instance, providing access to a13

bus stop that is served by a bus that does not go to many destinations is much less valuable than14

providing access to a bus stop that connects to a large portion of the city’s transit network.15

Links ranked highly by the Missing Links algorithm have a strong impact on accessibility16

to transit, but accessibility via transit is generally more interesting. Evaluating the accessibility17

via transit for such a large number of links is computationally chanllenging. Instead, I take the18

100 links that are ranked most highly, and I create a modified version of the input OpenStreetMap19

data that includes these links. I then evaluate accessibility to jobs within 60 minutes via transit, to20

understand how these links that increase access to transit also increase access using transit.21

I use the r5r package (3) to perform accessibility via transit calculations, using the GTFS22

data described above as well as the modified OpenStreetMap pedestrian network data. I calculate23

the number of jobs accessible within 60 minutes, based on the median travel time for departures24

between 7:00 and 9:00 AM on a weekday. I retrieve data on block-level job locations from the25

2022 US Census Bureau Longitudinal Employer-Household Dynamics.26

By default r5r connects a stop to closest street segment, as long as there is any street seg-27

ment within 1.6 km. For this project, I modified r5r (and the Conveyal 𝑅5 routing engine that28

powers it) to instead connect stops to segments that are within 20 m, to match the logic used in29

finding missing links. This way, r5r will correctly calculate the accessibility impact of proposed30

links that connect a stop to a nearby street (for instance, a sidewalk connecting to a stop along an31

arterial that does not have pedestrian infrastructure). I also modified r5 to retain all islands with32

10 or more vertices, as was done in the link identification algorithm, rather than its default of 40 or33

more.34

RESULTS35

After deduplication, the algorithm identified 42,000 potential new links in the pedestrian36

network. Of these, 16,000 have an access-to-transit score of more than 0, indicating that they37

potentially improve access to the transit network. Identifying and deduplicating the links took 7838

minutes on an M1 Macbook Pro with 16 GB RAM.39

Impacts of a single link40

The first step in the algorithm scores scored links based on the number of stops they provide41

access to, while the second step evaluates the aggregate impacts of high-scoring links on transit42

access. One of the links that scored highly in the first stage is shown in red in Figure 2a. This link43
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is a crossing of Glenwood Avenue in Raleigh in front of a commercial and residential development1

on the northeast side of the street. Glenwood Avenue is a fairly typical high-speed suburban arterial2

with minimal pedestrian infrastructure. There is relatively frequent bus service along this street (153

minutes, among the most frequent service in the Triangle). For residents of the development on4

the northeast side of Glenwood Avenue, it is fairly easy to access the bus stop for service traveling5

northwest. However, there is no infrastructure to allow them to safely cross the street to travel6

southeast. The link identified by the algorithm is shown in red, and would provide such a crossing.7

Figure 2: Link that scored highly in the first stage and enables access to a large number of
additional destinations

Figure 2b shows the catchment area of the stop immediately across the street from the de-8

velopment, under existing conditions and with the proposed link added. Under existing conditions,9

the development is not in the catchment area of this stop, but adding a safe crossing would expand10

the catchment area to include the development.11

Lastly, Figure 2c shows the reachable area via transit from the development under existing12

conditions and with the proposed crossing added to the network. There are no changes to the transit13

service in this scenario; the only change is the addition of the proposed crossing of Glenwood14

Avenue. The development the link connects to is highlighted with a red star. There is a significant15

expansion in reachable area to the north, east, and south thanks to the addition of the safe crossing.16

Previously it was not possible to board a southeast-bound bus from this development, as there was17

no way to cross the street; the reason areas to the south and east are not completely inaccessible in18

the baseline is because it would be possible to ride a bus the wrong way and then transfer to the19

opposite direction bus somewhere where it is safe to cross the street.20

The link is shown in its local context in Figure 3. The location of the proposed link is high-21

lighted in red, and the two bus stops as well as the entrance to the neighborhood are highlighted.22

This is clearly a challenging location to add a pedestrian crossing—Glenwood Avenue is essentially23

a freeway here, with a center median barrier, along with limited sight distances due to topography.24

There is a signalized intersection approximately 400 m north of this location, so perhaps extending25

sidewalk infrastructure to that location and providing a safe crossing there would be more realis-26

tic. This also demonstrates the challenges planners face in trying to reconnect and pedestrianize27

networks that were built for the exclusive use of private cars.28
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Figure 3: The location of the proposed link, looking northwest. © _jcaruso on Mapillary, CC
BY-SA

Even without making any changes to the transit service, adding this one key link to the1

transit network has a large effect on transit accessibility for people living in this location. This2

clearly demonstrates that there are opportunities to improve transit access, and thus transit rider-3

ship, through physical infrastructure, and that this algorithm is a reasonable way to identify these4

possibilities.5

Regional results6

The previous section evaluated the results of adding a single link to the network. However,7

the Missing Links algorithm identifies thousands of potential locations to add links. Individually8

evaluating the contribution of each of these links to job access via transit is not computationally fea-9

sible. However, the Missing Links algorithm does score each of these links with their contribution10

to access to transit stops. I use this as a heuristic and select the top 100 links based on this metric.11

I then add the top 100 links to the OpenStreetMap network and evaluate changes in job access via12

transit.13

It is computationally feasible to evaluate the effects of each of these 100 links on job accessi-14

bility via transit individually. However, for brevity, in this work I only compare existing conditions15

to a network where all of the top 100 links are added. I evaluate the accessibility impacts using a16

regional location-based access to jobs metric; for every Census block in the region, I evaluate the17

number of jobs accessible via transit within 60 minutes, for departures between 7 and 9 am, under18

existing conditions and with the links added.19

These links are shown in red in Figure 4. While it appears there are less than 100 links,20

this is because even after deduplication links tend to cluster, something also observed by Bhagat-21

Conway et al. (11). The impact of the new links on job access via transit is shown in blue, with22

darker blue areas indicating a larger change in access. Increases in access range from just a few23

8

https://www.mapillary.com/app/?lat=35.848976369049055&lng=-78.69220476604903&z=17&pKey=475207997093095&focus=photo
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percent to significantly above 50% (for instance, in a situation where a location has no transit access1

at all before the link is added).2

Figure 4: Change in jobs within 60 minutes via transit

As one might expect, the largest increases in accessibility are near the links. However,3

smaller changes are spread throughout the region. Residents who do not live near a link may still4

benefit from that link if it connects them to destinations, or even if it makes a transfer easier. This5

also demonstrates why it is not sufficient to only consider access to transit; closing missing links6

may make transit journeys easier even for people who do not live near those links. Combining the7

Missing Links algorithm with a jobs access via transit measure is critical to get the full impact of a8

link.9

DISCUSSION10

This article has demonstrated that there is potential to improve accessibility via transit11

through investments in the street network, and that theMissing Links algorithm provides a practical12

and computationally feasible way to identify candidate locations. It also demonstrates that it is im-13

portant to evaluate effects on accessibility via transit, not just accessibility to transit, to understand14

the full impact of these investments.15

Improving transit access via street network investments has several attractive fiscal prop-16

erties. Unlike investing in more frequent or extensive service, street network improvements are a17

one-time investment. Once the network improvement is made, it will improve access indefinitely18
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with minimal additional commitment of funds. Similarly, investing in the street network is capital1

rather than operating cost. Some grant funds are restricted to capital rather than operating invest-2

ments. If extensive right of way acquisition or grading are not required, the cost to add connections3

to the network is also small compared to other transit capital investments. This is not to say that4

investments in service are unsound, but that it makes sense to also invest in the pedestrian network5

to ensure that service dollars provide the best accessibility they possibility can.6

On the other hand, built environments change slowly, and once land is subdivided it can7

be very difficult to acquire right of way for new connections. It is much cheaper and easier to8

provide for these connections when street networks are first laid out. In fast-growing areas such9

as the Research Triangle, many new subdivision street networks are planned each year. It may be10

valuable to apply a tool such as this one to identify potential network changes to improve transit11

accessibility before plans are approved. Ideally, this exercise would be done using forecast rather12

than current transit service. Similarly, when planning a new bus or fixed-guideway transit route,13

applying this algorithm may help identify connections that could be added to the surrounding street14

network to maximize the impact of the new service.15

FUTURE RESEARCH16

While this research does evaluate job accessibility via transit, idenfication of top-scoring17

links is done using a much simpler access to transit stops metric. This simpler metric does not fully18

capture the experience of being a transit user. If those stops connect you to a bus line that doesn’t19

run frequently or serve many destinations, they are not very useful. Similarly, gaining access to20

a bus stop on a line you cannot currently access is much more valuable than gaining access to a21

second or third bus stop on a line you can already access. A true access via transit measure would22

account for both of these things.23

One of the key algorithmic innovations that makes Bhagat-Conway et al.’s (11) algorithm24

tractable is that it directly evaluates the difference in accessibility for each link, without needing to25

re-calculate accessibility estimates for the whole network. This requires that link costs not change26

over time–saving 5 minutes (or 500m walking) has the same effect on the trip regardless of where27

it was saved. This is not true for transit; a path that saved 5 minutes of walking time might save an28

hour overall if it let you get on an earlier bus.29

An intermediate step is to measure access to routes rather than stops. Currently, the Missing30

Links algorithm works with undirected graphs, which is generally an appropriate way to model31

pedestrian networks as one-way pathways for pedestrians are rare. If the algorithm were extended32

to work on directed graphs, a zero-length edge could be added from every stop along a route to a33

node that represented the route itself, and those nodes could be considered destinations. Thus, paths34

that connect people to additional stops on the same routes would not score highly. This requires an35

algorithm implementation with a directed graph because the edges connecting to the route nodes36

must all go to the route node, rather than from it. Otherwise, the route nodes could be used as37

“shortcuts” to allow people to teleport to any location along the route from any stop (cf. 21).38

STATEMENT ON AI TOOLS39

No AI/large language model tools were used in this research or the preparation of this40

manuscript.41
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