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ABSTRACT
Post-war suburban development is often characterized by a disconnected pod-and-collector street

pattern. This creates significant barriers to active travel, forcing even short trips to take roundabout routes
on busy arterial roads. However, it also creates a network of low-stress neighborhood streets. We
hypothesize that there are many opportunities to add short, low-cost pedestrian and bicycle links to these
street networks to increase connectivity.

A key challenge is identifying these links. While planners have a good idea of where major
infrastructure investments are beneficial, they are unlikely to be familiar with every neighborhood street
and potential connections between them. We introduce an algorithm to automatically and efficiently
identify potential new links based only on existing network topology, with no need to prespecify potential
projects. We score these links based on their contribution to accessibility. We apply this algorithm to the
pedestrian network of Charlotte, North Carolina, USA, and find opportunities to improve connectivity
through new links and safe crossings of major roads.

Keywords: pedestrian networks, bicycle networks, network design, accessibility
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1. INTRODUCTION
There is increasing interest worldwide in active travel, for a variety of reasons. Active travel

promotes public health (Glazener et al., 2021; Hansmann et al., 2023). If it replaces motorized travel, it
can reduce greenhouse gas emissions (Brand et al., 2021) and other externalities of motorization. One of
the most significant challenges to widespread adoption of active travel is a lack of safe infrastructure
(Winters et al., 2017). To address this, cities around the world have made investments in both permanent
and temporary infrastructure to promote active travel (Combs & Pardo, 2021).

Bicycle and pedestrian plans often focus on large-scale connections—such as new off-street paths
or protected bike lanes on major corridors. While these links are valuable, they are also costly,
controversial, and slow to implement. We hypothesize that there are additionally many short “low-
hanging fruit” links, which would provide critical connectivity between disconnected parts of the
network. For instance, these might be a connection between two adjacent neighborhoods, allowing people
to safely travel on foot from one neighborhood to the next without using an arterial. They might be
connections between a neighborhood and school that otherwise opens only onto an arterial. They might be
safe crossings of busy streets. These connections serve a smaller population than large investments, but
are also cheaper, faster to implement, and likely to face less public opposition. Since the value of
transportation infrastructure is primarily derived from network effects, each of these links increases the
value of the rest of the network.

We believe these opportunities exist across American suburbia. The dominant street pattern in
developments from the last 60 years is the “pod-and-collector” pattern, where neighborhood streets and
culs-de-sac connect to arterial roads (Boeing, 2021; Southworth & Ben-Joseph, 1995). This street design
generally discourages active travel. However, on neighborhood streets, traffic volumes are low, increasing
comfort for pedestrians and cyclists. Adding pedestrian and bicycle links to connect low-traffic streets
could significantly increase the potential for comfortable and safe carless travel.

A key challenge with these types of links is identifying them in the first place. While planners are
familiar with where demand for large infrastructure investments exists, this is less likely to be true of
small links on side streets that predominantly serve specific neighborhoods.

We present a new algorithm which identifies locations for potential links based only on existing
network topology, and scores them based on their contribution to accessibility. Our algorithm overcomes
many of the limitations of previous algorithms: we can identify these locations without any prespecified
scenarios, and we can identify both links provide new connections, as well as those that greatly shorten
existing connections. The identified links can be further assessed by planners for feasibility and
usefulness. We apply this method to the pedestrian network of Charlotte, North Carolina, USA, a
southeastern city with a largely postwar street and a renewed focus on pedestrian infrastructure.

2. LITERATURE REVIEW

2.1 Street network design
Disconnected street network designs were the norm for North American development for the

latter half of the 20™ century, but in the 21° there has been renewed interest in more connected street
networks. A number of cities adopted design standards restricting culs-de-sac, block sizes, or setting
minimum connectivity standards in the 2000’s (Handy et al., 2003). Empirical studies confirm that street
network connectivity in new developments dropped until the 1990’s, before rising again (Barrington-
Leigh & Millard-Ball, 2015; Boeing, 2021).
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Furthermore, the expansion of freeways starting in the mid-20"-century decreased connectivity
by bifurcating street networks, particularly in communities of color (Estrada, 2005). These roads
displaced, and continue to displace, scores of residents (Kimble, 2024; Swift, 2012). As early as the
1960’s it was recognized that these roads created barriers that harmed cities (Jacobs, 1961). Starting in the
1990°s, several San Francisco earthquake-damaged freeways were replaced with boulevards (Henderson,
2013). More recently, there have been grassroots efforts as well as new federal funding to remove
freeways or reconnect communities across them (Kimble, 2024).

Most studies of street connectivity do not differentiate by mode. Some authors note the value of
differential connectivity, with disconnected streets for autos and connectivity for active travel. This can
happen through “living ends” wherein cul-de-sacs have pedestrian or bicycle paths connecting them to
pathway networks or other neighborhoods. More systematic proposals include pedestrian superblocks and
“fused-grid” layouts, where a system of pedestrian paths provides connectivity within an otherwise
disconnected street network (Childs, 1996; Handy et al., 2003; Masoud et al., 2015). Some authors even
propose completely separate networks for active or lower-speed travel (Alexander et al., 1977; Delucchi
et al., 2010; Doxiadis et al., 1975). Off-street pedestrian connections can significantly increase
connectivity in areas with disconnected street networks (Giles-Corti et al., 2008; Tal & Handy, 2012).

While researchers have identified value in a more-connected pedestrian networks paired with
less-connected auto networks, the pedestrian and bicycle network is often even more disjointed than the
auto network (Mekuria et al., 2012). While many professional organizations recommend a 2:1 ratio of
sidewalk to roadway miles (representing sidewalks on both sides of every street), a recent survey of US
cities found that many did not even reach a quarter of that ratio (Coppola et al., 2021). That said, in high-
density urban areas, the pedestrian network may be far more extensive and connected than the road
network, demonstrating the need for high-quality pedestrian network data (Sun et al., 2021).

For a street network to be pedestrian friendly, it needs to not only provide pedestrian
infrastructure along the network, but also safe crossings of streets in the network. Unfortunately,
crosswalks are also lacking in many US cities. Moran (2022) found that almost half of intersections in
San Francisco—one of the more walkable cities in the US—were missing crosswalks. A large proportion
of the growing number of pedestrian fatalities in the US occur on arterials, underscoring the importance
for safe crossing to connected network (Schmitt, 2020).

Many regions have taken on efforts to map and identify missing sidewalks in their regions (e.g.,
Philadelphia, Boulan, 2022; Atlanta, Sanders, 2016). The District of Columbia is systematically closing
gaps in their sidewalk network, prioritized based on proximity to schools, parks, transit, and the high
injury network (District Department of Transportation, 2023).

2.2 Accessibility measurement
Accessibility metrics measure the potential of the transport system to connect people to

destinations. They are increasingly used in transportation planning (Committee of the Transport Access
Manual, 2020). These metrics most commonly measure how many destinations are accessible from each
location in a region; this is known as a location-based accessibility metric (Geurs & van Wee, 2004).
These location-based metrics are sometimes aggregated to a single regional metric by summing or
averaging the accessibility experienced by each individual in the region (e.g., Bertaud, 2018, ch. 2).
Among the most common applications of accessibility metrics is evaluation of proposed transport
projects (e.g., Conway et al., 2017; Lowry et al., 2016; Palmateer et al., 2016; Peralta-Quiros &
Mehndiratta, 2015; Pereira, 2019). Generally, accessibility metrics are calculated for some baseline, and
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then recalculated under a scenario with some change to the network. This is a useful and understandable
metric for both policymakers and the general public (Stewart & Zegras, 2016).

This process requires a small number of prespecified scenarios. This works for large
infrastructure investments—these are extensively planned, with accessibility evaluation being one part of
a larger planning process. However, it does not work well for neighborhood-scale interventions, which are
too numerous and insufficiently well-known to list.

2.3 The road network design problem
Algorithms that do not require a small number of prespecified scenarios are known as the road

network design problem (Farahani et al., 2013). These are optimization algorithms that choose a set of
optimal links to build based on some objective (usually minimized travel cost across the population),
subject to a budget constraint. The advantage of these algorithms is that they can evaluate many potential
projects, or a combination of projects. The downside is that they generally still require possible projects to
be prespecified, generally in the form of a network of existing and potential links (e.g., Drezner &
Wesolowsky, 2003; Duthie & Unnikrishnan, 2014; Lin & Yu, 2013; Mesbah et al., 2012; Ospina et al.,
2022; Zhang & Gao, 2009; Zhu & Zhu, 2020). While more projects can be evaluated, the planner must
have knowledge of all potential projects to create this network of potential links.

For neighborhood infrastructure, we need an algorithm that can identify investment locations
based on the existing network, without needing to enumerate potential locations a priori. One such
method is introduced by Natera Orozco et al. (2020), for bicycle network design. Their algorithm
partitions the network into components—segments of the network which are internally connected but
isolated from the rest of the network. They then iteratively connect the largest component to either the
closest or the next largest. This algorithm can effectively connect gaps in the bicycle network; however,
there are three downsides. First, it cannot guarantee that proposed links will be short. Second, it assumes
that the most valuable links are the ones that connect to the largest component, which may not always be
the case. Third, it cannot find links within a component that reduce travel distance. In some cases, the
most valuable links may not connect parts of the network that were disconnected previously, but provide
shortcuts between streets that are already connected in a roundabout fashion. Verma and Ukkusuri (2023)
propose using widely-available road centerline network data to identify all possible locations for
sidewalks and crossings. The main downside to this method is that it cannot identify off-street links.

3. METHOD
Our method starts from data on an existing pedestrian network, and identifies locations where

adding an additional short link could have a large impact. The algorithm has two steps. The first step finds
potential links. Each potential link connects two points on the network which are geographically close,
but distant (or disconnected) by traveling along the network. The second step scores these potential links
based on their contribution to accessibility.

3.1 Finding potential links
We first compute a distance matrix between all nodes, using Dijkstra’s algorithm (Dijkstra, 1959).

This matrix is used extensively in the following steps.

The next step is to find potential links. We define these as locations that are geographically close
together, but far apart on the network (or, potentially, disconnected entirely). We define a potential link as
two points on the network that are within 100 meters of each other geographically, but at least 1,000
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meters apart via the network. These distances can be adjusted to fit local context. Potential links may
occur between points on any two edges; they do not necessarily have to connect existing nodes.

To identify possible locations for new links, we iterate over each edge g in the network. Using a
spatial index, we iterate over all nearby edges 4. Most of these edges are closely connected to g. To
quickly eliminate these from consideration, we calculate an upper bound on the network distance between
any two points on edges g and 4. This upper bound is the minimum network distance (from the distance
matrix) between the nodes at either end of g and either end of /, plus the lengths of g and 4. If this upper
bound is less than the minimum network distance to consider a potential link (1000m in our case), all
points on g and / are within 1000m of one another, and thus are not eligible to be considered as a
potential link because they are already connected. We thus remove the edge pair from consideration as a
potential link.

Otherwise, we compute the shortest crow-flies distance between g and 4, as well as the points
where they pass most closely together, using the GEOS library. If this distance is short enough to be
considered a potential link, we calculate the network distance between the points, using the node-to-node
distance matrix computed and the distances from the ends of the edges to the locations where they pass
most closely together. This is computed as the minimum of the network distances between all four
combinations of the nodes at the ends of g and 4, plus the offsets from the ends of the edges to the point
where they pass most closely together. If this network distance is greater than the minimum network
distance to consider a link, or if the edges are disconnected entirely, we record this as a potential link.

A simplifying assumption is that we always propose links where two edges pass most closely
together. This is not always optimal. For example, the network in Figure 1 has two culs-de-sac that run
largely parallel, but curve slightly towards one another at their ends. The closest points are near the ends
of the culs-de-sac, but using a link in that location would require a detour to the end of one cul-de-sac and
then back up the other. A slightly longer link near the start of the culs-de-sac could be more useful, and
cost only slightly more to construct. This problem will be most apparent with long edges. To help
ameliorate the issue, we artificially insert intersections such that no edge is longer than 250m.

That said, decisions about exact siting of a link will ultimately be made by humans, not algorithms, as
many other factors come into play (e.g. topography, land acquisition, etc.).
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Figure 1: A hypothetical portion of a network where the location where the edges pass most closely
(blue) has a lower accessibility impact than a longer link between the same edges (red)

3.2 Link deduplication

This process finds many potential links, but most of them are almost completely duplicative of
one another. We consider two potential links to be duplicates if both ends of one link are within 100m
network distance of one of the ends of the other. To identify duplicate links, we use the following greedy
algorithm.

For the first potential link, we identify the “sphere of influence” of that link; the sphere of
influence is all nodes that are within 100m of either end of the potential link. We calculate this using the
node-to-node distance matrix and the distances of the link from the start and end of the edges it connects.
For subsequent potential links, we check to see if one of the ends of each of the edges it connects is in an
existing sphere of influence. If it is, we further check to see if the network distances between the ends of
this potential link and the ends of potential link that defined the sphere of influence are less than the
threshold for both ends of the links. If these network distances are both less than the radius of the sphere
of influence, we add the link to this sphere of influence. If a potential link is not within any existing
sphere of influence, we define a new sphere of influence based on the potential link. We then retain the
potential link with the shortest geographic distance from each sphere of influence.

The deduplication algorithm is demonstrated in Figure 2. The potential links in blue are identified
by the algorithm. There are several clusters of links that provide basically the same connectivity. After
deduplication, only the potential links shown in red are retained. While these remain somewhat
duplicative, and not all make logical sense, the situation can be handled by human planners reviewing the
results.
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Figure 2: Results of link deduplication algorithm (Imagery: NC OneMap/NC 911 Board, sidewalk
data: City of Charlotte, street name data © OpenStreetMap contributors)

3.3 Scoring potential links
Even after deduplication, the process described above will identify thousands of potential links in

a city-scale network. The second part of our algorithm scores each of the potential links by their
contribution to aggregate accessibility. We define aggregate accessibility as the sum of the accessibility
experienced by all members of the population. This is an appropriate metric for evaluating missing links,
as it accounts for both the magnitude of the accessibility increase and the number of people affected by it.
Links that improve accessibility for many people, or that greatly improve accessibility for a few people,
will score highly. This is closely related to the average-accessibility measures of labor market access used
by Bertaud (2018). Mathematically, we define aggregate accessibility a as

n

azz:oizn:wjf(dij) D
=1

i=1
where o; is the number of origins (people in our case) at node 7, w; is the number of destinations at
location j, and d;; is the network distance from i to ;.

f (di j) is a distance decay function that controls how much less attractive destinations further
away are. There are number of distance decay functions used in accessibility measurement (Geurs & van
Wee, 2004), and our method can use a variety of them. However, for simplicity, in this research we
primarily use a cumulative-opportunities metric:

flag)={, 7 2= @

0 otherwise
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where c is a distance cutoff (we primarily use 3.2 km/2 mi). With this distance decay function, we can
interpret accessibility as the number of destinations reachable within the cutoff distance. Aggregate
accessibility is this value summed across the population. We additionally perform sensitivity tests with 1
mile and 3 mile cutoffs, as well as a negative exponential functional form in the results section.

3.4 Scoring links
We score each link by the change the aggregate accessibility it provides. The naive approach of

recalculating the distance matrix separately for each potential link and then calculating accessibility is not
computationally feasible, so we use the following more efficient algorithm.

For each link, we arbitrarily set one end as p; and the other as p,, without loss of generality. We
then define our origin set / as all nodes within ¢ — / meters network distance of p,, and our destination set
J as all nodes within ¢ — [ meters network distance of p,. Since our accessibility metric only includes
distances less than ¢, and the link itself has length /, any node that is more than ¢ - / meters from either
end of the new link cannot be affected by the new link.

If using a distance-decay function other than cumulative opportunities, ¢ is defined as the point at
which that distance decay function goes to zero. Many decay functions asymptotically approach zero. In
these cases, we modify the function to be piecewise, and drop to zero at some defined point when the
distance decay is near enough zero that further destinations are immaterial to accessibility.

For any pair of nodes i € [ and j € J, we can calculate the distance between them using the new
link as

dipﬂ’zj = dip1 +l+ dpzf (3)

where d;, is calculated as the minimum distances between i and each end of the edge containing p,, plus
the offsets from the respective end to p;. dp, j is calculated similarly.

The process is illustrated in Figure 3. The blue line shows the path between nodes i and j using
the existing network. i and j are existing nodes in the network. The proposed link is shown in red,
connecting p, and p,, which are points on edges in the existing street network, but not necessarily at
nodes. p;occurs on the edge between existing nodes k and k', and p, occurs between m and m’'. The path
from i to j via the new link is shown in dark green. The distance is calculated as the distance from i to £
(labeled [1]), plus the distance from £ to p; (labeled [2]), plus the length of the link (labeled [3]), plus the
distance from p, to m (labeled [4]), and from m to j (labeled [5]). All possible combinations of paths
containing k or k£’ and m or m’ are considered.
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Figure 3: A hypothetical street network displaying how distances using a new link are calculated

We then take the minimum of this and the original distance between i and j to calculate the
shortest distance d; ; between i and ; in the network with this link added. This assumes that adding a link
cannot increase distances. This is always true for physical distance. In uncongested networks, it holds for
travel time if the new links do not introduce intersection penalties. For congested networks, Braess’
paradox may apply, where an additional link increases travel times by concentrating more travelers on a
link (Braess et al., 2005).

We then calculate the contribution of i and j to the change in aggregate accessibility as the
number of origins at node #, multiplied by the number of destinations at j, multiplied by the difference in
distance decay functions from the network with and without the potential link. To calculate the total
contribution to aggregate accessibility of the link from p; to p,, we sum across our origin and destination
sets:

Ady,p, = Z Z oiw;[f(d'yj) = f(dip)] (4)

i€l jeJ

Finally, since the link can be used in either direction, we reverse p; and p,, and likewise calculate
Aay,p,- We add these results to get the final aggregate accessibility impact of the link.

Thus, we calculate the difference in aggregate accessibility directly, without recalculating the
distance matrix or overall aggregate accessibility. The entire process of computing the change in

10
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accessibility relies only on the precomputed distance matrix; new shortest-path calculations are not
needed.

The heuristic nature of the deduplication algorithm means that it is possible the optimal link will
not be retained. For instance, if a link retained by the deduplication algorithm supplanted one that was
slightly closer to a destination—particularly if it was near a cutoff distance in a cumulative-opportunities
metric—the retained link could have a lower accessibility impact than the “duplicate” it supplanted. We
recommend experimenting with several cutoff distances if using a cumulative-opportunities metric.

3.5 Computational details
For performance, all algorithms are implemented in Julia (Bezanson et al., 2017), making heavy

use of the Graphs package (Fairbanks et al., 2021), among others. All the code used in this project is at
[link removed for review], along with instructions on how to apply it to other street networks. We
parallelize the slowest parts of the algorithm, calculating distances and scoring. Both are “embarrassingly
parallel,” meaning there is no dependence between different starting nodes (for the shortest path
algorithm) or potential links (for the scoring algorithm). This allows results for different nodes or links to
be computed simultaneously, without needing any synchronization between computations. We store the
distance matrix from the shortest path algorithm in a memory-mapped file, allowing fast access even if
the machine does not have sufficient memory to hold the full matrix. To preserve memory and maximize
speed, we store distances in this matrix as unsigned 16-bit integer meters, allowing us to represent
distances up to 65.5 km, far longer than any reasonable daily bicycle or pedestrian trip.

4. CASE STUDY: CHARLOTTE, NORTH CAROLINA
We applied our method to the pedestrian network of Charlotte, North Carolina, USA. The

population and economy of the Charlotte area are growing rapidly. Mecklenburg County is increasingly
racially diverse, and the financial gap between income groups continues to widen (Mecklenburg County
Board of Commissioners, 2023). Roadway fatalities have increased almost every year since 2012.
Mecklenburg County is the deadliest in the state for roadway users. Roadway fatalities in the area
disproportionately affect pedestrians and bicyclists. Charlotte adopted a Vision Zero plan to eliminate
traffic fatalities in 2016, and created a task force in 2018. Traffic safety is a key component of the city’s
Strategic Mobility Plan and 2050 Metropolitan Transportation Plan (Charlotte Regional Transportation
Planning Organization, 2022; City of Charlotte, 2022; North Carolina Division of Motor Vehicles, 2022).

Government entities acknowledge the lack of a cohesive multimodal transportation network (City
of Charlotte, 2022), but according to independent advocacy organizations, such as Sustain Charlotte and
the Charlotte Urbanists, little is being done to actively address the gaps. In Mecklenburg County, nearly
70 percent of homes are within a half mile of a transit stop, however, only 44% of paved roads have
sidewalks (Mecklenburg County et al., n.d.). The continued prioritization of interstate travel through I-77,
1-85, and 1-277 exacerbates multimodal transportation challenges.

4.1 Data
Developing a sidewalk network is challenging and requires many assumptions (Rhoads et al.,

2023). The City of Charlotte collects and publishes data about the locations of sidewalks and greenways
within their jurisdiction. Unfortunately, these data are not designed to support routing. Sidewalks in the
dataset often do not connect with one another at corners, and crosswalks are not digitized. We created a

11
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routable dataset by manually connecting disconnected portions of sidewalks and greenways using aerial
imagery from 2019, as well as automatically connecting nodes within 3.5 meters.! We digitized all
marked crosswalks. For residential/local streets that were one lane each way and flanked by houses, we
assume safe unmarked crosswalks exist in all directions. For all others, we consider unmarked crosswalks
connecting sidewalks along roadways across side streets, but not crossing through traffic on major roads.
When we ran the algorithm, a number of locations identified had pedestrian infrastructure installed since
2019. We digitized infrastructure in these locations based on a variety of sources (primarily Google
Maps/Street View).

The decisions around what links to include in the pedestrian network can have significant
implications for accessibility results (van Eggermond & Erath, 2016). We did not include low-traffic
streets without pedestrian infrastructure. While many people may feel safe walking on such streets, in
Charlotte they be dangerous. The Charlotte Department of Transportation maintains a High Injury
Network dataset, calculated using five years of fatal and serious injury crashes (City of Charlotte, 2023).
Even some residential streets are considered part of the high-injury network. We also did not include
informal pedestrian connections, which can be significant contributors to connectivity but are not
maintained by municipal governments and thus have more limited policy relevance (Cambra et al., 2019).

One challenge when working with any network dataset is “islands”—walkable areas disconnected
from the rest of the network. These may be due to data quality issues, or actual disconnected pieces of
infrastructure. To balance fixing data quality issues and retaining data on infrastructure quality, we
remove all islands with fewer than 10 nodes.

Calculating accessibility contributions of new links requires detailed spatial data on population
and destinations. For population data, we use 2020 US Census population counts at the block level. We
disaggregate these data to parcels, based on the number of units on each parcel from the Mecklenburg
County Assessor, and the proportion of the parcel within the block. We assign each parcel to a network
edge within 20 meters; if there are multiple, we divide the population evenly among them. The algorithm
requires data at the node rather than edge level, so we assign half of each edge’s population to the node at
either end. Only 65% of the city’s population is assigned to the network. Much of the remaining
population lives in locations without sidewalks or pedestrian infrastructure. A small portion lives in areas
with private sidewalk infrastructure not included in the data from the City of Charlotte.

The Charlotte Regional Transportation Planning Organization provides a scoring guide for
bicycle and pedestrian projects, which identifies high, medium, and low priority destinations (Charlotte
Regional Transportation Planning Organization, 2021). We used high and medium priority destinations,
giving high-priority destinations a weight of three and medium-priority destinations a weight of two. We
created the dataset of destinations by aggregating information from Data Axle, Mecklenburg County, the
City of Charlotte, the US Department of Agriculture, the US Department of Education, the Centers for
Medicare and Medicaid Services, and the North Carolina Department of Health and Human Services. In
most cases, these are point data, which we assign to parcels and then link to the network as described
above. For some destinations that are polygons (e.g. parks) or adjacent to streets (e.g. bus stops) we

! Automatically closing gaps in the network is a two-step process; first we ensure nodes exist any place the
end of one line segment passes within 3m of another line segment, and create them if there is not a node with 0.5m
of the closest point on the second segment. Then we add edges between all nodes less than 3.5m apart, to ensure that
all of the nodes we created are connected, even if they are slightly more than 3m apart.

12
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assign them directly to nearby edges. Details of how the destination data was constructed, and from what
sources, are in the Supplemental Materials.

4.2 Results
Our final network has 140,289 nodes and 161,745 edges. Calculating shortest paths,

deduplicating links, and scoring them took 26 minutes using Julia 1.11.4 with four threads on an Apple
MacBook Pro with 16GB of RAM, a solid-state disk, and an Apple M1 processor.

The algorithm identified 133,246 potential missing links; after the deduplication process, 2,777
were retained, with a maximum aggregate accessibility impact of 350,000 households multiplied by
destinations within two miles walk, a mean of 15,000, and a median of 4,300. The full distribution of
accessibility impacts is shown in Figure 4. There are a few very high-value links, and many more of
medium value.

2000

1500

1000

Number of links

500

0 ——
0 100,000 200,000 300,000 400,000

Aggregate accessibility impact

Figure 4: Histogram of aggregate accessibility impact of each link

Figure 5 shows the top 100 links identified in the region. The links are spread regionally, but
many are approximately 1-2 miles from Uptown Charlotte (the Charlotte central business district). This is
unsurprising, given that our accessibility metric accounts for destinations within 2 miles, though it does
suggest that the algorithm is sensitive to the distance cutoff chosen.

Quite a few links are effectively duplicates, but were not filtered by the deduplication algorithm
as they were not part of the same sphere of influence (for example, the links shown in red in Figure 2).
We manually reviewed the top-ranked 100 links, and grouped them into 41 groups of links that provide
approximately the same access. Of these, 31 represented gaps best closed by new crossings, and 11
represented gaps in sidewalks. Four represented new off-street paths. Two links would require bridges or
other vertical infrastructure. Some links fell into multiple categories.

All but one fell within existing public right-of-way. Four crossed railroad infrastructure,
potentially making planning and permitting more difficult.

While we initially expected the algorithm to find a higher proportion of off-street paths, Charlotte
has a clear problem with safe crossings. While off-street paths may provide shortcuts, missing pedestrian
connections may completely bifurcate the city, making their importance relatively higher. It is also
possible that many potential off-street links do not fall below our 100 meter threshold.
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Figure 5 Top 100 links identified by the algorithm

The most highly ranked road crossing is at a railroad crossing on Louise Avenue, just outside
uptown, and is shown in Figure 6a. On the south side of the tracks, the sidewalk is on the west side of the
street; it transitions to the east side north of the tracks. There is no marked crossing of the street or the
tracks. Closing this gap would connect residents north of the tracks with significant opportunities in the
uptown area to the south. This link has an accessibility score of 350,000.

The units of this score are persons multiplied by destination points, with high priority destinations
receiving three points and medium priority destinations receiving two. This large score is driven by a
combination of the relatively high residential density in this neighborhood, and the proximity to many
destinations in uptown Charlotte. It is most useful to evaluate this score relative to other scores, rather
than on its own.

Constructing this link may not be feasible, however, due to the need to involve the railroad.
Furthermore, traffic volumes on this street are relatively low—2700 vehicles/day—potentially making the
crossing less of a priority than its accessibility score would indicate (North Carolina Department of
Transportation, 2024). For these reasons, it is critical that planners be involved to assess the feasibility
and value of any links identified.

The most highly ranked sidewalk gap is on Mallard Creek Church Road west of Tryon Street
(Figure 6b), with an accessibility score of 254,400—i.e. 73% as much accessibility impact as the highest
scoring project. There is a large apartment complex directly north of the link; the link would provide
access to commercial destinations along Tryon Rd without a 2.7 km detour to use existing sidewalks.

14



O 0 3 N Lt B W N —

—_
—_ O

12
13

14
15

16
17
18
19
20
21

There are already many people walking here, as evidenced by a dirt path worn in the grass. This places
pedestrians directly next to high-speed traffic, and is not accessible for people with disabilities. A
drainage ditch along the side of the road might mean that constructing a sidewalk here requires some
earthmoving, but does not make it infeasible.

The most highly ranked new off-street connection that is not better served by a sidewalk on a
parallel street is a connection between Commonwealth Avenue and the intersection of Wendover and
Independence Avenues, a connection that was previously present but removed when a cloverleaf
interchange was installed. This link has an accessibility score of 121,900 (i.e. 35% as much as the highest
scoring project). This location is shown in Figure 6¢; the photographer is standing at the end of the
existing sidewalk.
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Figure 6 Photographs and maps of most highly ranked road crossing (left), sidewalk gap (center),
and new off-street connection (right). Photographs © Google Street View. Basemap data ©
OpenStreetMap contributors.

As a sensitivity test, we also ran the algorithm with distance cutoffs of one and three miles, as
well as a negative exponential decay function e ~%-00132di; g, ; in meters; the coefficient -0.00132 was
calculated using the formula from Osth et al. (2014) so that the decay function would be 0.5 at 526
meters, the median non-loop walking trip distance in North Carolina (calculated from Federal Highway
Administration, 2018). This function reaches 0.01 at 5.25 km, after which we assume additional

destinations do not affect accessibility. Running the scoring portion of the algorithm with longer distance
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cutoffs is slower, even though link identification and deduplication results are reused; scoring links using
the negative exponential took the longest at 55 minutes.

The results are somewhat sensitive to the choice of functional form, an unfortunate but well-
known challenge of accessibility metrics (Pereira, 2019). The first example given above (the crossing of
Louise Ave) ranks as the highest access improvement by the one and two mile metrics, as well as the
negative exponential, but ranks 59" by the three-mile metric. This is likely because detouring around this
location is only a 1.5km walk, and for the three-mile metric you can still reach the busy uptown area even
if you detour.

Of the top 100 links identified by the two-mile cutoff, 43, 63, and 62 were in the top 100 for the
one-mile, three-mile, and negative exponential forms, respectively. Pairwise Spearman rank correlations
between the scores for all links were 0.63 or higher. Several functional forms should be evaluated when
applying the algorithm. Local context should be taken into account. The reason for the low overlap with
between the 1- and 2-mile metrics is likely that, in most places in Charlotte, valuable clusters of
destinations are more than 1 mile away.

5. LIMITATIONS AND FUTURE RESEARCH
There are several avenues for future research. The scoring process does not consider the

feasibility of constructing links. Links that score highly may be bifurcated by rivers, railroads, highways,
buildings, or cliffs. They may cross private property. Depending on the owner and the configuration of the
property, construction may or may not be feasible. The key concern with adding an automated feasibility
step is that it may declare links infeasible when a slight reconfiguration would be feasible. For example, a
direct link between two points might pass through a house, but a curved link could skirt the property and
provide effectively the same access. We believe these feasibility issues are best addressed by a human
planner reviewing the highest rated potential links, and determining any changes that could be made to
improve feasibility.

We evaluate the accessibility contribution of each potential link independently. In many cases, a
critical connection might consist of two or more links. For instance, there are two potential links in the
neighborhood in Figure 7. The one shown in red, linking a neighborhood to the strip mall with a grocery
and drugstore, is already fairly valuable. The link shown in blue is not particularly valuable on its own—it
links two neighborhoods, but neither contains non-residential destinations. However, if the red link were
built as well, the blue link would become much more valuable, as it would now provide access to both the
neighborhood and the strip mall.
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Figure 7: Links may be more valuable when considering multiple links simultaneously

Considering the contribution of multiple links in concert, however, greatly increases
computational burden. The number of calculations increases combinatorically with the number of links
considered together. That said, choosing the best subset of a set of potential links is exactly the road
network design problem. Combining algorithms for that problem with the potential links identified by our
algorithm could find the best groups of links.

6. DISCUSSION AND CONCLUSION
In this article, we introduced an algorithm for finding the “low-hanging fruit” potential links in

the pedestrian network. We found that there are numerous opportunities to provide missing connections in
Charlotte. We anticipate similar findings in suburban locations across the US and around the world.

The algorithm is open-source, and can run on mid-range desktops or laptops. For these reasons,
we hope that it will find broad applicability. Identifying and closing missing links in the pedestrian
network is a relatively low-cost way to open up safe walking opportunities to a larger population.

There are many ways the algorithm can be productively applied. It can work in concert with
scenario planning. For example, it could be applied to a network dataset including a proposed multi-use
path, to identify ancillary links that could increase the value of the path. These might be connections
between the path and adjacent streets, or links that do not connect to the path at all but connect
neighborhoods that do not have access with neighborhoods that do. Similarly, the algorithm could be
applied to the proposed street network of new subdivisions, to understand where the proposed network
could be better connected while there is still time to make changes. Coordinating construction of the
potential links identified with larger projects maximizes the value of investments in the network and
promotes efficient use of funds due to economies of scale.

Just because there is pedestrian infrastructure does not mean it is comfortable to walk on,
especially for children. For instance, we considered unsignalized marked crosswalks across arterials to be
pedestrian infrastructure, but they are not particularly useful if people do not feel safe using them. The
algorithm could also be applied to a subset of a pedestrian network that is considered safe (e.g., using the
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pedestrian stress definitions of Hardy et al., 2019), to identify where links need to be added or improved
to increase safe accessibility.

The algorithm proposed can use many different definitions of origin and destination weights. In
our case study, we used disaggregated population data for origins. This treats every person equally, but
pedestrian infrastructure is more important for low-income or zero-vehicle households with fewer
mobility choices. Adjusting the origin weights to weight these households more heavily would allow
prioritizing investment based on equity considerations. A significant funding source for bicycle and
pedestrian infrastructure in the US are Safe Routes to School programs (Stewart et al., 2014). Using
schools as the destination weights would allow the algorithm to identify links that most improve access to
schools, supporting investment decisions for Safe Routes to School programs.

We have focused on pedestrian networks in this article, but the same algorithm could be applied
to bicycle networks as well, with a slight algorithmic modification to support directed (one-way) links. In
low-density areas, providing safe, connected bicycling infrastructure may be more likely to promote non-
motorized travel than safe, connected pedestrian networks. In the US, the median auto trip is 5.1 miles,
and the 25™ percentile is 2.2 miles (Federal Highway Administration, 2022, and author calculations).
These trips lengths are long for walking, but are reasonable distances to travel by bike.

The biggest challenge to applying the algorithm is data. A comprehensive and connected sidewalk
dataset is required, something most municipalities do not have. For this project, significant effort went
into cleaning the existing Charlotte sidewalk dataset. OpenStreetMap is a global, open-access alternative,
but its sidewalk data is inconsistently coded and often incomplete (Omar et al., 2022). In particular, it
often does not differentiate which side of the street the sidewalk is on.
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